Abstract
This article presents a knowledge-based application to study and analyze traffic behavior on major roads, using as the main surveillance artefact a video camera mounted on a relatively high place with a significant image analysis field. The system described presents something new which is the combination of both traditional traffic monitoring systems, that is, monitoring to get information on different traffic parameters and monitoring to detect accidents automatically. Therefore, we present a system in charge of compiling information on different traffic parameters. It also has a surveillance module, which can detect a wide range of the most significant incidents on a freeway or highway.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cucchiara, R., Piccardi, M., Mello, P.: Image analysis and rule-based reasoning for a traffic monitoringsystem. IEEE Transactions on Intelligent Transportation Systems 1(2), 119–130 (2000)
Fernández, M.A., Fernández-Caballero, A., López, M.T., Mira, J.: Length-Speed Ratio (LSR) as a characteristic for moving elements real-time classification. Real-Time Imaging 9(1), 49–59 (2003)
Fernández-Caballero, A., Mira, J., Fernández, M.A., Lopez, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22(14), 1517–1524 (2001)
Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: A model for motion detection. Neurocomputing 50, 341–364 (2003)
Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognition 36(5), 1131–1142 (2003)
Gupte, S., Masoud, O., Martin, R.F.K., Papanikiolopoulos, N.P.: Detection, and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems 3(1), 37–47 (2002)
Ha, D.M., Lee, J.M., Kim, Y.D.: Neural-edge-based vehicle detection and traffic parameter extraction. Image and Vision Computing 22(11), 899–907 (2004)
Hsieh, J.W., Yu, S.H., Chen, Y.S., Hu, W.F.: Automatic traffic surveillance system for vehicle tracking and classification. IEEE Transactions on Intelligent Transportation Systems 7(2), 175–187 (2006)
Ji, X., Wei, Z., Feng, Y.: Effective vehicle detection technique for traffic surveillance systems. Journal of Visual Communication and Image Representation 17(3), 647–658 (2006)
Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image and Vision Computing 21(4), 359–381 (2003)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)
Mira, J., Delgado, A.E., Fernández-Caballero, A., Fernández, M.A.: Knowledge modelling for the motion detection task: The algorithmic lateral inhibition method. Expert Systems with Applications 27(2), 169–185 (2004)
Rad, R., Jamzad, M.: Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters 26(10), 1597–1607 (2005)
Tai, J.C., Tseng, S.T., Lin, C.P., Song, K.T.: Real-time image tracking for automatic traffic monitoring and enforcement applications. Image and Vision Computing 22(6), 485–501 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Fernández-Caballero, A., Gómez, F.J., López-López, J. (2007). Knowledge-Based Road Traffic Monitoring. In: Mira, J., Álvarez, J.R. (eds) Nature Inspired Problem-Solving Methods in Knowledge Engineering. IWINAC 2007. Lecture Notes in Computer Science, vol 4528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73055-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-73055-2_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73054-5
Online ISBN: 978-3-540-73055-2
eBook Packages: Computer ScienceComputer Science (R0)