Skip to main content

Improvement of ANNs Performance to Generate Fitting Surfaces for Analog CMOS Circuits

  • Conference paper
Nature Inspired Problem-Solving Methods in Knowledge Engineering (IWINAC 2007)

Abstract

One of the typical applications of neural networks is based on their ability to generate fitting surfaces. However, for certain problems, error specifications are very restrictive, and so, the performance of these networks must be improved. This is the case of analog CMOS circuits, where models created must provide an accuracy which some times is difficult to achieve using classical techniques. In this paper we describe a modelling method for such circuits based on the combination of classical neural networks and electromagnetic techniques. This method improves the precision of the fitting surface generated by the neural network and keeps the training time within acceptable limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyle, G.R., Cohn, B.M., Pederson, D.O., Solomon, J.E.: Macromodeling of Operational Integrated Circuit Amplifiers. IEEE Journal of Solid–State Circuits 9, 353–364 (1974)

    Article  Google Scholar 

  2. Wei, Y., Doboli, A.: Library of structural cell macromodels for design of continuous-time reconfigurable Delta-Sigma modulators. In: IEEE Intl. Symp. on Circuits and Systems, pp. 1764–1767 (2006)

    Google Scholar 

  3. Doménech-Asensi, G., Hinojosa, J., Martínez-Alajarín, J., Garrigós-Guerrero, J.: Empirical Model Generation Techniques for Planar Microwave Components using Electromagnetic Linear Regression Models. IEEE Trans. Microwave Theory and Tech. 53, 3305–3311 (2005)

    Article  Google Scholar 

  4. Vancorenland, P., der Plas, G.V., Steyaert, M., Gielen, G., Sansen, W.: A Layout–aware Synthesis Methodology for RF Circuits. In: Proc. IEEE/ACM International Conference on Computer Aided Design, pp. 358–362 (2001)

    Google Scholar 

  5. McConaghy, T., Gielen, G.: Analysis of Simulation-Driven Numerical Performance Modeling Techniques for Application to Analog Circuit Optimization. In: IEEE Intl. Symp. on Circuits and Systems, pp. 1298–1301 (2005)

    Google Scholar 

  6. Watson, P.M., Gupta, K.C.: EM-ANN models for microstrip vias and interconnects in multilayer circuits. IEEE Trans. Microwave Theory Tech. 44, 2495–2503 (1996)

    Article  Google Scholar 

  7. Watson, P.M., Gupta, K.C., Mahajan, R.L.: Development of knowledge based artificial neural network models for microwave components. In: IEEE Int. Microwave Symp. Digest, pp. 9–12 (1998)

    Google Scholar 

  8. Bult, K., Geelen, G.J.G.M.: A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain. IEEE Journal of Solid-State Circuits 25, 1379–1384 (1998)

    Article  Google Scholar 

  9. Rumelhart, D.E., Inton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Data Processing, 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  10. Hagan, M.T., Menhaj, M.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. On Neural Networks 5, 989–993 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Díaz-Madrid, J.Á., Monsalve-Campillo, P., Hinojosa, J., Rodellar Biarge, M.V., Doménech-Asensi, G. (2007). Improvement of ANNs Performance to Generate Fitting Surfaces for Analog CMOS Circuits. In: Mira, J., Álvarez, J.R. (eds) Nature Inspired Problem-Solving Methods in Knowledge Engineering. IWINAC 2007. Lecture Notes in Computer Science, vol 4528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73055-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73055-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73054-5

  • Online ISBN: 978-3-540-73055-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics