Abstract
A polynomial f(x) over F q , the finite field with q elements, is called a complete mapping polynomial if the two mappings F q →F q respectively defined by f(x) and f(x) + x are one-to-one. In this correspondence, complete mapping polynomials over F 16 are considered. The nonexistence of the complete mapping polynomial of degree 9 and the existence of the ones of degree 8 and 11 are proved; the result that the reduced degree of complete mapping polynomials over F 16 are 1, 4, 8, 10, 11, 12, 13 is presented; and by searching with computer, the degree distribution of complete mapping polynomials over the field is given.
Supported by National Natural Science Foundation of China (60373087, 60473023, 90104005, 60673071).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Niederreiter, H., Robinson, K.H.: Bol loops of order pq. Math. proc. cambridge philos. soc. 89, 241–256 (1981)
Niederreiter, H., Robinson, K.H.: Complete mappings of finite fields. J. Austral. Math. Soc. Ser.A 33, 197–212 (1982)
Wan, D.: On a problem of Niederreiter and Robinson about finite fields. J.Austral. Math. Soc. Ser. A 41, 336–338 (1986)
Lidl, R., Niederreiter, H.: Finite Fields, encyclopedia of mathematics and its application. Addison-Wesley Publishing Company, London (1983)
Zhihui Li: The Research on Permutation Theory in Block Cipher System. Ph.D thesis, Northwestern Polytechnical University (2002)
Lang, S.: Algebraic number theory, 2nd edn. GTM110. Springer, Berlin Heidelberg New York (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yuan, Y., Tong, Y., Zhang, H. (2007). Complete Mapping Polynomials over Finite Field F 16 . In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-73074-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73073-6
Online ISBN: 978-3-540-73074-3
eBook Packages: Computer ScienceComputer Science (R0)