Skip to main content

Explicit Formulas for Real Hyperelliptic Curves of Genus 2 in Affine Representation

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4547))

Included in the following conference series:

Abstract

In this paper, we present for the first time efficient explicit formulas for arithmetic in the degree 0 divisor class group of a real hyperelliptic curve. Hereby, we consider real hyperelliptic curves of genus 2 given in affine coordinates for which the underlying finite field has characteristic > 3. These formulas are much faster than the optimized generic algorithms for real hyperelliptic curves and the cryptographic protocols in the real setting perform almost as well as those in the imaginary case. We provide the idea for the improvements and the correctness together with a comprehensive analysis of the number of field operations. Finally, we perform a direct comparison of cryptographic protocols using explicit formulas for real hyperelliptic curves with the corresponding protocols presented in the imaginary model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avanzi, R.M.: Aspects of hyperelliptic curves over large prime fields in software implementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 148–162. Springer, Heidelberg (2004)

    Google Scholar 

  2. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and Its Applications, vol. 34. Chapman & Hall/CRC, Sydney, Australia (2005)

    Google Scholar 

  3. Enge, A.: How to distinguish hyperelliptic curves in even characteristic. In: Alster, K., Urbanowicz, J., Williams, H.C., (eds.) Public-Key Cryptography and Computational Number Theory, pp. 49–58, De Gruyter, Berlin (2001)

    Google Scholar 

  4. Gaudry, P.: On breaking the discrete log on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for small genus hyperelliptic index calculus. Mathematics of Computation 76, 475–492 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jacobson Jr., M.J., Menezes, A.J., Stein, A.: Hyperelliptic curves and cryptography. In: High Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams. Fields Institute Communications Series, vol. 41, pp. 255–282. American Mathematical Society (2004)

    Google Scholar 

  7. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Cryptographic protocols on real and imaginary hyperelliptic curves. Accepted to Advances in Mathematics of Communications pending revisions (2007)

    Google Scholar 

  8. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Fast Arithmetic on Hyperelliptic Curves Via Continued Fraction Expansions. To appear in Advances in Coding Theory and Cryptology. In: Shaaska, T., Huffman, W.C., Joyner, D., Ustimenko, V. (eds.) Series on Coding, Theory and Cryptology, vol. 2, World Scientific Publishing (2007)

    Google Scholar 

  9. Koblitz, N.: Hyperelliptic cryptosystems. Journal of Cryptology 1, 139–150 (1988)

    Article  MathSciNet  Google Scholar 

  10. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable Algebra in Engineering, Communication, and Computing 15, 295–328 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Menezes, A.J., Wu, Y., Zuccherato, R.J.: An elementary introduction to hyperelliptic curves. Technical Report CORR 96-19, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, 1996. In: Koblitz, N. (ed.) Algebraic Aspects of Cryptography, Springer, Heidelberg (1998)

    Google Scholar 

  12. Müller, V., Stein, A., Thiel, C.: Computing discrete logarithms in real quadratic congruence function fields of large genus. Mathematics of Computation 68, 807–822 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mumford, D.: Tata Lectures on Theta I, II. Birkhäuser, Boston (1983/84)

    Google Scholar 

  14. National Institute of Standards and Technology (NIST). Recommendation on key establishment schemes. NIST Special Publication 800-56 (January 2003)

    Google Scholar 

  15. Paulus, S., Rück, H.-G.: Real and imaginary quadratic representations of hyperelliptic function fields. Mathematics of Computation 68, 1233–1241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pelzl, J., Wollinger, T., Paar, C.: Low cost security: explicit formulae for genus-4 hyperelliptic curves. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 1–16. Springer, Heidelberg (2003)

    Google Scholar 

  17. Scheidler, R.: Cryptography in quadratic function fields. Designs, Codes and Cryptography 22, 239–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Scheidler, R., Stein, A., Williams, H.C.: Key-exchange in real quadratic congruence function fields. Designs, Codes and Cryptography 7, 153–174 (1996)

    MATH  MathSciNet  Google Scholar 

  19. V. Shoup. NTL: A library for doing number theory. Software (2001) See http://www.shoup.net/ntl .

  20. Stein, A.: Sharp upper bounds for arithmetics in hyperelliptic function fields. Journal of the Ramanujan Mathematical Society 9-16(2), 1–86 (2001)

    Google Scholar 

  21. Wollinger, T., Pelzl, J., Paar, C.: Cantor versus Harley: optimization and analysis of explicit formulae for hyperelliptic curve cryptosystems. IEEE Transactions on Computers 54, 861–872 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Carlet Berk Sunar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erickson, S., Jacobson, M.J., Shang, N., Shen, S., Stein, A. (2007). Explicit Formulas for Real Hyperelliptic Curves of Genus 2 in Affine Representation. In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73074-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73073-6

  • Online ISBN: 978-3-540-73074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics