Skip to main content

The Quadratic Extension Extractor for (Hyper)Elliptic Curves in Odd Characteristic

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4547))

Included in the following conference series:

Abstract

We propose a simple and efficient deterministic extractor for the (hyper)elliptic curve \(\mathcal{C}\), defined over \(\mathbb{F}_{q^2}\), where q is some power of an odd prime. Our extractor, for a given point P on \(\mathcal{C}\), outputs the first \(\mathbb{F}_{q}\)-coefficient of the abscissa of the point P. We show that if a point P is chosen uniformly at random in \(\mathcal{C}\), the element extracted from the point P is indistinguishable from a uniformly random variable in \(\mathbb{F}_q\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Artin, E.: Algebraic Numbers and Algebraic Functions. Gordon and Breach, New York (1967)

    MATH  Google Scholar 

  • Beelen, P., Doumen, J.M.: Pseudorandom sequences from elliptic curves. In: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, pp. 37–52. Springer, Heidelberg (2002)

    Google Scholar 

  • Chevassut, O., Fouque, P., Gaudry, P., Pointcheval, D.: The Twist-Augmented Technique for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, New York (2006)

    MATH  Google Scholar 

  • Farashahi, R.R., Pellikaan, R., Sidorenko, A.: Extractors for Binary Elliptic Curves, Extended Abstract to appear at WCC (2007)

    Google Scholar 

  • Gong, G., Berson, T.A., Stinson, D.R.: Elliptic Curve Pseudorandom Sequence Generators. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 34–48. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Gürel, N.: Extracting bits from coordinates of a point of an elliptic curve, Cryptology ePrint Archive, Report 2005/324, (2005), http://eprint.iacr.org/

  • Hartshorne, R.: Algebraic Geometry, Grad. Texts Math, vol. 52. Springer, Berlin Heidelberg (1977)

    Google Scholar 

  • Hess, F., Shparlinski, I.E.: On the Linear Complexity and Multidimensional Distribution of Congruential Generators over Elliptic Curves. Designs, Codes and Cryptography 35(1), 111–117 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Juels, A., Jakobsson, M., Shriver, E., Hillyer, B.K.: How to turn loaded dice into fair coins. IEEE Transactions on Information Theory 46(3), 911–921 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Kaliski, B.S.: A Pseudo-Random Bit Generator Based on Elliptic Logarithms. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 84–103. Springer, Heidelberg (1987)

    Google Scholar 

  • Lange, T., Shparlinski, I.E.: Certain Exponential Sums and Random Walks on Elliptic Curves. Canad. J. Math. 57(2), 338–350 (2005)

    MATH  MathSciNet  Google Scholar 

  • Lange, T., Shparlinski, I.E.: Distribution of Some Sequences of Points on Elliptic Curves. J. Math. Crypt. 1, 1–11 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1994)

    Google Scholar 

  • Poonen, B.: Bertini Theorems over Finite Fields. Annals of Mathematics 160(3), 1099–1127 (2004)

    MathSciNet  Google Scholar 

  • Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors. Bulletin of the EATCS 77, 67–95 (2002)

    MATH  MathSciNet  Google Scholar 

  • Shparlinski, I.E.: On the Naor-Reingold Pseudo-Random Function from Elliptic Curves. Applicable Algebra in Engineering, Communication and Computing—AAECC 11(1), 27–34 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Trevisan, L., Vadhan, S.: Extracting Randomness from Samplable Distributions. In: IEEE Symposium on Foundations of Computer Science, pp. 32–42. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Carlet Berk Sunar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farashahi, R.R., Pellikaan, R. (2007). The Quadratic Extension Extractor for (Hyper)Elliptic Curves in Odd Characteristic. In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73074-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73073-6

  • Online ISBN: 978-3-540-73074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics