Abstract
We propose a unifying phase-space approach to the construction of mutually unbiased bases for an n-qubit system. It is based on an explicit classification of the geometrical structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves intersecting only at the origin and satisfying certain additional conditions. The effect of local transformations is also studied.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schwinger, J.: The geometry of quantum states. Proc. Natl. Acad. Sci. USA 46, 257–265 (1960)
Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys (NY) 176, 1–21 (1987)
Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)
Lawrence, J., Brukner, Č., Zeilinger, A.: Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 65, 32320 (2002)
Chaturvedi, S.: Aspects of mutually unbiased bases in odd-prime-power dimensions. Phys. Rev. A 65, 44301 (2002)
Wootters, W.K.: Quantum measurements and finite geometry. Found. Phys. 36, 112–126 (2006)
Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys (NY) 191, 363–381 (1989)
Asplund, R., Björk, G.: Reconstructing the discrete Wigner function and some properties of the measurement bases. Phys. Rev. A 64, 12106 (2001)
Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-State systems. Phys. Rev. Lett. 85, 3313–3316 (2000)
Cerf, N., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. A 88, 127902 (2002)
Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997)
Vaidman, L., Aharonov, Y., Albert, D.Z.: How to ascertain the values of σ x , σ y , and σ z of a spin-1/2 particle. Phys. Rev. Lett. 58, 1385–1387 (1987)
Englert, B.-G., Aharonov, Y.: The mean king’s problem: prime degrees of freedom. Phys. Lett. A 284, 1–5 (2001)
Aravind, P.K.: Solution to the king’s problem in prime power dimensions. Z. Naturforsch. A. Phys. Sci. 58, 85–92 (2003)
Schulz, O., Steinhübl, R., Weber, M., Englert, B.-G, Kurtsiefer, C., Weinfurter, H.: Ascertaining the values of σ x , σ y , and σ z of a polarization qubit. Phys. Rev. Lett. 90, 177901 (2003)
Kimura, G., Tanaka, H., Ozawa, M.: Solution to the mean king’s problem with mutually unbiased bases for arbitrary levels. Phys. Rev. A 73, 50301 (R) (2006)
Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3246 (1981)
Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: ℤ4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. London Math. Soc. 75, 436–480 (1997)
Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, V.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)
Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications. LNCS, vol. 2948, pp. 137–144. Springer, Heidelberg (2004)
Lawrence, J.: Mutually unbiased bases and trinary operator sets for N qutrits. Phys. Rev. A 70, 12302 (2004)
Parthasarathy, K.R.: On estimating the state of a finite level quantum system. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7, 607–617 (2004)
Pittenger, A.O., Rubin, M.H.: Wigner function and separability for finite systems. J. Phys. A 38, 6005–6036 (2005)
Durt, T.: About mutually unbiased bases in even and odd prime power dimensions. J. Phys. A 38, 5267–5284 (2005)
Planat, M., Rosu, H.: Mutually unbiased phase states, phase uncertainties, and Gauss sums. Eur. Phys. J. D 36, 133–139 (2005)
Klimov, A.B., Sánchez-Soto, L.L., de Guise, H.: Multicomplementary operators via finite Fourier transform. J. Phys. A 38, 2747–2760 (2005)
Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge (1986)
Buot, F.A.: Method for calculating Tr \(\mathcal{H^{n}}\) in solid-state theory. Phys. Rev. B 10, 3700–3705 (1974)
Galetti, D., De Toledo Piza, A.F.R.: An extended Weyl-Wigner transformation for special finite spaces. Physica A 149, 267–282 (1988)
Cohendet, O., Combe, P., Sirugue, M., Sirugue-Collin, M.: A stochastic treatment of the dynamics of an integer spin. J. Phys. A 21, 2875–2884 (1988)
Wootters, W.K.: Picturing qubits in phase space. IBM J. Res. Dev. 48, 99–110 (2004)
Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields. Phys. Rev. A 70, 62101 (2004)
Paz, J.P., Roncaglia, A.J., Saraceno, M.: Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem. Phys. Rev. A 72, 12309 (2005)
Durt, T.: About Weyl and Wigner tomography in finite-dimensional Hilbert spaces. Open Syst. Inf. Dyn. 13, 403–413 (2006)
Klimov, A.B., Munoz, C., Romero, J.L.: Geometrical approach to the discrete Wigner function in prime power dimensions. J. Phys. A 39, 14471–14497 (2006)
Romero, J.L., Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: On the structure of the sets of mutually unbiased bases for N qubits. Phys. Rev. A 72, 62310 (2005)
Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67, 267–320 (2004)
Englert, B.-G., Metwally, N.: Separability of entangled q-bit pairs. J. Mod. Opt. 47, 2221–2231 (2000)
Björk, G., Romero, J.L., Klimov, A.B., Sánchez-Soto, L.L.: Mutually unbiased bases and discrete Wigner functions. J. Opt. Soc. Am. B 24, 371–379 (2007)
Klimov, A.B., Romero, J.L., Björk, G., Sánchez-Soto, L.L.: J. Phys. A 40, 3987–3998 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klimov, A.B., Romero, J.L., Björk, G., Sánchez-Soto, L.L. (2007). Discrete Phase-Space Structures and Mutually Unbiased Bases. In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-73074-3_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73073-6
Online ISBN: 978-3-540-73074-3
eBook Packages: Computer ScienceComputer Science (R0)