Skip to main content

Efficient Computation of Minimum Exposure Paths in a Sensor Network Field

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4549))

Included in the following conference series:

Abstract

The exposure of a path p is a measure of the likelihood that an object traveling along p is detected by a network of sensors and it is formally defined as an integral over all points x of p of the sensibility (the strength of the signal coming from x) times the element of path length. The minimum exposure path (MEP) problem is, given a pair of points x and y inside a sensor field, find a path between x and y of a minimum exposure. In this paper we introduce the first rigorous treatment of the problem, designing an approximation algorithm for the MEP problem with guaranteed performance characteristics. Given a convex polygon P of size n with O(n) sensors inside it and any real number ε> 0 , our algorithm finds a path in P whose exposure is within an 1 + ε factor of the exposure of the MEP, in time O(n/ε 2 ψ), where ψ is a topological characteristic of the field. We also describe a framework for a faster implementation of our algorithm, which reduces the time by a factor of approximately Θ(1/ε), by keeping the same approximation ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1964)

    MATH  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  3. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52(1), 25–53 (2005)

    Article  MathSciNet  Google Scholar 

  4. Aurenhammer, F.: Voronoi diagrams -— surrvey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  5. Cardei, M., Wu, J.: Coverage in wireless sensor networks. In: Ilyas, M., Mahgoub, I. (eds.) Handbook of Sensor Networks, CRC Press, Boca Raton (2004)

    Google Scholar 

  6. Clouqueur, T., Phipatanasuphorn, V., Ramanathan, P., Saluja, K.K.: Sensor deployment strategy for detection of targets traversing a region. ACM Mobile Networks and Applications 8(4), 453–461 (2003)

    Article  Google Scholar 

  7. Gage, D.W.: Command control for many-robot systems. Unmanned Systems Magazine 10(4), 28–34 (1992)

    Google Scholar 

  8. Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology 29(3), 317–325 (1980)

    Article  MathSciNet  Google Scholar 

  9. Huang, H., Richa, A.W., Segal, M.: Dynamic coverage in ad-hoc sensor networks. Mobile Networks and Applications 10(1-2), 9–17 (2005)

    Article  Google Scholar 

  10. Li, X.-Y., Wan, P.-J., Frieder, O.: Coverage in wireless ad hoc sensor networks. IEEE Transactions on Computers 52(6), 753–763 (2003)

    Article  Google Scholar 

  11. Megerian, S., Koushanfar, F., Qu, G., Veltri, G., Potkonjak, M.: Exposure in wireless sensor networks: theory and practical solutions. Wireless Networks 8(5), 443–454 (2002)

    Article  MATH  Google Scholar 

  12. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage problems in wireless ad-hoc sensor networks. In: INFOCOM, pp. 1380–1387 (2001)

    Google Scholar 

  13. Sun, Z., Reif, J.H.: Bushwhack: An approximation algorithm for minimal paths through pseudo-euclidean spaces. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 160–171. Springer, Heidelberg (2001)

    Google Scholar 

  14. Veltri, G., Huang, Q., Qu, G., Potkonjak, M.: Minimal and maximal exposure path algorithms for wireless embedded sensor networks. In: SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 40–50. ACM Press, New York (2003)

    Chapter  Google Scholar 

  15. Weinstock, R.: Calculus of Variations, with Applications to Physics and Engineering. Dover Publications, New York (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James Aspnes Christian Scheideler Anish Arora Samuel Madden

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Djidjev, H.N. (2007). Efficient Computation of Minimum Exposure Paths in a Sensor Network Field. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds) Distributed Computing in Sensor Systems. DCOSS 2007. Lecture Notes in Computer Science, vol 4549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73090-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73090-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73089-7

  • Online ISBN: 978-3-540-73090-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics