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Abstract. The exposure of a path p is a measure of the likelihood that
an object traveling along p is detected by a network of sensors and it is
formally defined as an integral over all points x of p of the sensibility (the
strength of the signal coming from x) times the element of path length.
The minimum exposure path (MEP) problem is, given a pair of points
x and y inside a sensor field, find a path between x and y of a minimum
exposure. In this paper we introduce the first rigorous treatment of the
problem, designing an approximation algorithm for the MEP problem
with guaranteed performance characteristics. Given a convex polygon P
of size n with O(n) sensors inside it and any real number ε > 0, our
algorithm finds a path in P whose exposure is within an 1 + ε factor of
the exposure of the MEP, in time O(n/ε2ψ), where ψ is a topological
characteristic of the field. We also describe a framework for a faster
implementation of our algorithm, which reduces the time by a factor of
approximately Θ(1/ε), by keeping the same approximation ratio.

1 Introduction

Wireless sensor networks have been attracting the interest of computer scientists
and engineers recently due to their potential to impact our everyday lives and
because of their numerous applications in areas such as health care, national
security, inventory tracking, surveillance, and environmental monitoring.

One of the fundamental issues in sensor networks is related to analyzing the
coverage, or how well a network of sensors monitors the physical space for an
intrusion. The coverage is a measure of the quality of service (QoS) of the sensing
function and has been studied by several authors (see [5] for a recent survey of
results). The concept of coverage was introduced by Gage [7], who studied it in
relation to multi-robot systems. He defined three classes of coverage problems:
blanket coverage (also known as area coverage), where the goal is to achieve
a static arrangement of sensing elements that maximizes the detection rate of
targets appearing in the region, sweep coverage, where the goal is to move a
number of sensors across the region as to maximize the probability of detecting
a target, and barrier coverage, where the objective is to protect the region from
undetected penetration.
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The first model proposed for the barrier coverage problem is due to
Meguerdichian et al. [12], who defined the maximum breach path problem as
a problem of the following type: given a sensor field with known locations of
the sensors, find a path such that the distance from any point on the path to
the closest sensor is maximized. Meguerdichian et al. solve the maximum breach
path problem by using the fact that there is always a maximum breach path that
goes along the edges of the Voronoi diagram [4] computed for the set of sensor
locations. This concept was further developed by Meguerdichian et al. [11] and
by Veltri et al. [14], who define the exposure of a path p as an integral over all
points x of p of the ability of sensing (detecting) x, which ability is given as a
function that depends on the distance between x and the closest sensor, as well
as the sensing time.

The minimum exposure path (MEP) problem is, given a sensor field and a pair
of points x and y inside it, find a path between x and y of a minimum exposure.
Meguerdichian et al. [11] give an exact formula for computing the MEP between
two points at equal distances from the sensor in a single-sensor field and a sens-
ing function γ/d(s, x), where γ is a constant and d(s, x) is the Euclidean distance
between the sensor location s and the point x on the path. Although there is no
formal proof published, the MEP problem is believed to be unsolvable in the case
of multi-sensor fields. In order to solve it approximately, in [11] the region is cov-
ered by an k×k grid of points, each point is connected by edges to l other points
following a given pattern, edge weights are assigned equal to the approximated
exposures computed using numerical integration techniques, and finally a single
pair shortest path problem is solved on the resulting graph. There is no analysis
in [11] of how closely the path constructed by their algorithm approximates the
MEP or of the time complexity of the algorithm, although it is easy to see that
the size of the graph they construct is Ω(k2l) and that it is dependent on the
area of the region and is independent of the number of the sensors. Veltri et al.
[14] find a partial solution to the problem of exactly computing the exposure
between two points in a single-sensor field and describe, for the case of many-
sensor fields, a heuristic message-passing distributed algorithm that allows the
sensor network to estimate a minimum exposure without knowing the network
topology. Distributed algorithms for coverage problems were also studied by Li
et al. in [10], for the problem of finding a path with maximum observability, and
by Huang et al. in [9], who consider a dynamic version of the maximum breach
and maximum observability path problems, where the topology of the sensor
network may change due to new sensors being inserted, relocated, or deleted
from the network.

In this paper we describe an approximation algorithm for solving the MEP
problem. Our algorithm takes as input a description of a sensor field consisting
of n sensors positioned inside an O(n) vertex simple polygon P , two points x
and y in P , and any number ε > 0. It returns a path between x and y in P
whose exposure is within 1+ε factor of the exposure of the MEP. The algorithm
is based on an analysis of the properties of MEPs and on a discretization of the
region by constructing a Voronoi diagram and defining additional points and
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edges. Then a shortest path problem is solved on the resulting graph and the
resulting shortest path is used as an approximation to the MEP. The time of the
algorithm is O(n/ε2ψ), where ψ is a topological characteristic of the field. We
also describe a faster version of the algorithm that improves the computation
time by a factor of roughly Θ(1/ε).

The main contributions of this paper are the following: (i) We find an exact
solution for the MEP problem in a single-sensor field – the previous solution [14]
was valid only in special cases; (ii) We develop the first approximation algorithm
for the MEP problem in a multi-sensor field with theoretically guaranteed run-
ning time and approximation ratio; (iii) We develop a theoretical framework that
can be applied for designing approximation algorithms for related minimum ex-
posure and coverage problems; (iv) Our algorithm is much faster and uses much
less memory than the previous algorithms [11], [14] since the latter create a 2-D
mesh of points covering the entire region, while we only place additional points
on the edges.

The paper is organized as follows. In Section 2 we formally introduce the
MEP problem and give some definition. In Section 3 we study MEPs in sensor
fields of a single sensor and in Section 4 we study the multiple-sensor case. In
Section 5 we describe our approximation algorithms for computing a minimum
exposure path and in the last section we conclude with a list of open problems
and ongoing work.

2 Preliminaries and Problem Formulation

We consider a connected region P in the plane of bounded aspect ratio, e.g.,
such that the ratio of the square root of the area of P and the perimeter of P is
bounded. We have n identical sensors located at points l1, . . . , ln in P monitoring
for a target in P . Each target emits a signal that the sensors try to detect. The
strength of that signal diminishes with the distance traveled. The probability
that a target will be detected depends also on parameters such as the energy
emitted by the target, the nature of the signal, the sensitivity of the sensors,
and the noise in the environment. Adopting a widely used sensibility model
[8,11,14,6], we assume that the signal energy of a target at point x detected by
a single sensor at point l is

S(l, x) =
γ

d(l, x)μ
, (1)

where d(l, x) is the Euclidian distance between l and x and γ and μ are con-
stants. Depending on the technology and the environment, the value of μ, called
sensibility exponent, is typically between 1 and 5.

A sensor field F is defined as a 3-tuple F = (P, L, S), where P is a connected
region in the plane, L = {l1, . . . , ln} is the set of sensor locations, and the
function S, called sensibility of F , is defined by (1).

For the case of multiple sensors, the notion of sensor field intensity for a given
point x in the sensor field F has been introduced in [11] in order to measure
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the likelihood that a target on x will be detected by any of the sensors. There
are two basic variations of the model. In the all-sensor intensity model, the
intensity at point x, denoted by IA(F, x), is defined as a sum of the sensibilities
of individual sensors, e.g., IA(F, x) =

∑n
i=1 S(li, x). The all sensor intensity

model reflects more accurately the capability of the sensors to detect a target,
but it has also a number of weaknesses: (i) it assumes that all sensors are active
during most of the time, which would be energy inefficient; (ii) it presents greater
communication and data fusion challenges; (iii) the collection of data from weak
sources increases the total noise-to-signal ratio.

In the closest-sensor field intensity model the intensity at a point x, denoted
by IC(F, x), is defined as IC(F, x) = S(li, x), where li is the closest sensor to x.

Let p be a path given as p = {p(t) ∈ P | t ∈ [t1, t2]}, where [t1, t2] is a given
interval and p(t) is a continuous function differentiable everywhere in [t1, t2]
except for a finite number of point. The exposure of p with regard to intensity
model I and field F is defined [14,11] as

exp(p, I, F ) =
∫ t2

t1

I(F, p(t))
∣
∣
∣
∣
dp(t)
dt

∣
∣
∣
∣ dt , (2)

where I(F, x) is either IA(F, x) or IC(F, x) and |dp(t)/dt| is the element of arc
length. In the rest of this paper we assume that I(F, x) = IC(F, x). The definition
of exposure accounts for the fact that the probability for a target traveling at a
constant speed along the path p to be detected by a sensor is proportional to the
intensity of the field along p and the length of the path. A minimum exposure
path MEP(x, y, F ) between x and y is defined as a path between x and y in P
with a minimum exposure.

The minimum exposure path problem is, given a sensor field F = (P, L, S) and
a pair of points x and y, find MEP(x, y, F ). In order to simplify the notations,
we use exp(p) or exp(p, S) instead of exp(p, I, F ) and MEP(x, y) instead of
MEP(x, y, F ), when P , L, F , and/or I are clear from the context.

We end this section with several definitions from graph theory. A graph G is a
pair of two sets denoted by V (G) and E(G), where V (G) is the set of the vertices
and E(G) is the set of the edges of G, where each edge is a pair (v, w) of vertices.
A path p in G is a sequence v0, . . . , vk of vertices, where (vi−1, vi) ∈ E(G) for
i = 1, . . . , k. If k = 0 then p is a null path. If there are weights associated with
the edges of G, then the length of p is defined as the sum of the weights of all
edges (vi−1, vi). Given two vertices v, w ∈ V (G), the distance between v and w
is the minimum length of any path between v and w (infinity, if there is no such
path). The shortest path problem is, given v and w, find a shortest path between
v and w.

3 Single-Sensor Fields

Next, we will study the MEP problem in the case of a single sensor. Without
loss of generality, in the rest of this paper we assume that γ = 1, where γ is the
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constant from (1). (Changing γ scales the exposures of all paths by the same
factor and hence preserves the minimum exposure paths.)

Case A: Unrestricted region. We will start by considering the case of an
unbounded region, e.g., where P is the entire plane. We use polar coordinates
to represent each point q as a pair (ρ, α), where ρ is the distance between q and
the origin O (which we choose to be the sensor location) and α ∈ [0, 2π) is the
angle between the polar axis and −→

Oq. The exposure of a path p with endpoints
x(ρ0, 0) and y(ρα, α) in polar coordinates given as p = {(ρ(θ), θ) | θ ∈ [0, α]} can
be written as

exp(p, d−μ−1 ) =
∫ α

0
ρ(θ)−μ−1

√
ρ(θ)2 + ρ′(θ)2 dθ. (3)

Using the Beltrami identity [15], we can find that if ρ is a nonnegative function
defined in the interval [0, α] that minimizes the integral (3), then

ρ(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ0(
ρα

ρ0
)

θ
α if μ = 0; (4)

(
ρμ
0 sin(μα − μθ) + ρμ

α sin(μθ)
sin(μα)

)1/μ

if μ �= 0. (5)

Formulas (4)–(5) were derived in [14] using the Euler-Lagrange differential equa-
tion, but were not analyzed whether they correspond to a minimum of (3).
But since (4)-(5) are only necessary conditions, one needs to additionally check
whether a function ρ satisfying (4) or (5) for a particular set of values for μ, ρ0,
ρα, and α is a minimum or an inflexion point. (Clearly, ρ from (4) or (5) can
not be a maximum since (3) is unbounded from above for μ ≥ 0 – it tends to
infinity when ρ → 0.) Consider the following two cases.
Case 1: μ = 0. Let φM be the set of all nonnegative continuous functions defined
in (0, α] and upper bounded by M . The integral (3) is unbounded from above
(for any μ ≤ 0) as it tends to infinity when ρ → ∞. Therefore, for some M
sufficiently large, the exact lower bound of (3) for all functions in (0, α] will be
the same as the exact lower bound of (3) restricted to the set of functions from
φM . But φM is a compact set and, hence, the exact lower bound over φM (and
therefore over all functions in (0, α]) is reached for some function ρ̃ from φM .
Since there is a unique function satisfying the necessary condition (4), then ρ̃
should be the function defined by (4). Hence (4) does define a MEP between x
and y (it is not an inflexion point).

In order to compute the exposure of that path, substitute the expressions for
ρ from (4) into the exposure expression (3), resulting in

minExp(x, y, d−1 ) =
∫ α

0

√

1 +
ln2(ρα/ρ0)

α2 dθ =
√

α2 + ln2(ρα/ρ0) . (6)

Case 2: μ > 0. In this case the function (5) may or may not represent a minimum,
depending on the values of α, ρ0, and ρα. For instance, if α = π/μ, the path
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Fig. 1. A MEP in an infinite region may
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Fig. 2. Illustration to the
proof of Lemma 7

given by (5) is not defined. If ρ0 = ρa and α → (π/μ)+, ρ is unbounded from
above and hence ρ would not define an optimal path for α close enough to π/μ.
If ρ0 = ρa and α → (π/μ)−, ρ is unbounded from below (and, in particular,
gets negative values). In these cases (5) does not correspond to a solution of
the optimization problem and the minimum of (3) is not reached for any (finite)
function ρ. However, as we show next, a MEP always exists if the region P is
bounded.

Case B: Minimum exposure paths in a polygonal region P . Intuitively,
if we consider paths in the entire plane in the case where (5) corresponds to an
inflexion point, the MEP from x to y will follow the ray from x in the direction−→
Ox to infinity, then move along an infinite circle to align with the line yO (the
exposure along that semicircle will be zero), and finally move in the direction of−→
yO to point y (Figure 1). Although this path is of infinite length, its exposure if
finite; the exposure of the path is minExp1(x, y, d−μ−1 ) = (ρ−μ

0 + ρ−μ
α )/μ.

In a polygonal region, the portion of the path described above that is outside
P is replaced by the path of lower exposure among the two paths along the
boundary of P connecting the same endpoints. We will refer to the latter path as
the direct escape path (DEP). As a DEP in P is a chain of straightline segments,
we will need a formula for the exposure along a single such segment. If the
segment xy belongs to a line containing point O, then the exposure along the
DEP p between the points x(ρ1, 0) and y(ρ2, 0), 0 < ρ1 ≤ ρ2, which we denote
by minExp1, can be computed by the formula

minExp1(x, y, d−μ−1 ) = exp(p, d−μ−1 ) =

⎧
⎨

⎩

ln ρ2 − ln ρ1 if μ = 0 (7)
1
μ

(ρ−μ
1 − ρ−μ

2 ) if μ > 0. (8)

Otherwise, the exposure minExp1(x, y, d−μ−1 ) along the segment (DEP) p be-
tween points x(ρ0, 0) and y such that � Oyx = π/2 and � xOy = α is
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exp(p, d−μ−1 ) =

⎧
⎪⎨

⎪⎩

ln(sec α + tan α) if μ = 0

ρ−μ
0 2F1

(
1
2
,
μ + 1

2
;
3
2
; − tan2 α

)

tan(α) if μ > 0, (9)

where 2F1 is the Gaussian hypergeometric function [1]. A segment xy for which
� Oyx �= π/2 can always be represented as a sum or a difference of segments of
the above type.

Next, the exposure of the path p defined by (5) is

minExp2(x, y, d−μ−1) =
sin(μα)(tan(μα − c2) + tan c2)

μ
√

ρ2μ
0 + ρ2μ

α − 2ρμ
0ρμ

α cos(μα)
, (10)

where tan(c2) = ρμ
α−ρμ

0 cos(μα)
ρμ
0 sin(μα) .

Finally, the minimum exposure between x and y is determined as

minExp(x, y, d−μ) = min{minExp1(x, y, d−μ), minExp2(x, y, d−μ)}.

The path corresponding to the smaller of the two exposures is the MEP.

4 Multiple-Sensor Fields

Here we consider the case of a sensor field F = (P, L, S) with an arbitrary
number n of sensors, where L = {l1, . . . , ln} is the set of the locations of the
sensors and P is a convex polygon of size O(n) that contains all points li.

We construct a Voronoi diagram Vor(L) for L in P , which is a tessellation of
P into n convex polygons C1, . . . , Cn, which we call cells of Vor(L), such that
Ci is the set of all points that are closer to li than to any other point from L.
The Voronoi diagram can be constructed in O(n log n) time. (See [4] for more
information about Voronoi diagrams.) Denote by V (Ci) and E(Ci) the sets of
the vertices and the edges of Ci, respectively.

Next we analyze the structure of the MEP between any two points x and y
from P . First we consider the case where x and y belong to the same cell Ci.

Lemma 1. Define sensor fields F1 = (Ci, L, S) and F2 = (P ′, L, S), where
|L| = 1 and P ′ is the entire plane and let x and y be points from Ci. Then

(a) the minimum exposure path p = MEP(x, y, F1) either contains a point from
the boundary of Ci, or p = MEP(x, y, F2);

(b) the intersection between p and any edge of P is either empty or a single
segment.

Proof. (a) If p is disjoint with the boundary of Ci, then p is a stationary point
for (3) and hence it can be determined by the method discussed in Section 3
Case A.
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(b) Assume that claim (b) does not hold. Then there will exist a subpath
p′ of p that joins a pair of points x1, x2 on an edge of Ci and whose interior is
entirely inside Ci. Then, by (a), p′ = MEP(x1, x2, F2). Consider the path p′′ with
endpoints x1, x2 that is symmetrical to p′ with respect to the line x1x2. Then
p′′ will have a smaller intensity and the same element of arc length compared to
p′ and hence, by (2), a smaller exposure, which is a contradiction. �	

Next we consider the case where x and y can belong to different cells of Vor(L).

Lemma 2. Given two points x ∈ Ci and y ∈ Cj, i �= j, MEP(x, y, F ) consists
of a sequence of subpath each of them of one of the following types:

(i) a MEP from x to a point on an edge of Ci or from a point on an edge of
Cj to y;

(ii) a MEP between points belonging to two different edges of the same cell of
Vor(L);

(iii) a segment on an edge of Vor(L).

Proof. Follows from the discussion in Section 3 and Lemma 1. �	

5 An Approximation Algorithm for Constructing MEPs

Next we describe and analyze an algorithm that computes an approximation of
the MEP between a pair of points x and y. In the algorithm, we first discretize the
region by triangulating it and creating a set S of additional points called Steiner
points (SPs) on the edges of the triangulation. This is similar to the discretization
schemes used for solving shortest path problems on weighted polyhedral surfaces,
e.g., [3]. Then we define a graph with a vertex set {x} ∪ {y} ∪ Vor(L) ∪ S and
an edge between any pair of vertices belonging to the same triangle. We define
a weight on each edge (v, w) equal to the exposure either along the minimum
exposure path between v and w in the triangle containing v and w, if v and
w belong to different edges, or along the edge containing v and w, otherwise
(see Lemma 2). Then the algorithm finds the shortest path in the resulting
graph between x and y using a modification of Dijkstra’s algorithm. Next we
describe the steps in more detail and analyze the accuracy and the efficiency of
the algorithm.

5.1 Defining Steiner Points

First we will define ”empty” regions around each sensor location li that will
contain no SPs. The rationale is to limit the number of SPs we have to define
in each Voronoi cell Ci, because the number of SPs needed to achieve a given
approximation ratio increases when the distance to li decreases. We need the
following properties.
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Lemma 3. Let F1 and F2 be fields with sensibility exponents μ1 = 0 and μ2 >
μ1, respectively. Given two points x1(r, α1) and x2(r, α2) belonging to cell Ci ∈
Vor(L), let

p1 = MEP(x1, x2, F1) = {(ρ1(θ), θ) | θ ∈ [0, α]}
and

p2 = MEP(x1, x2, F2) = {(ρ2(θ), θ) | θ ∈ [0, α]}.

Then ρ1(θ) ≤ ρ2(θ) for all θ ∈ (α1, α2).

Let F be a field with a scalability exponent μ ≥ 0, and let di =min{d(li, z) | z ∈
E(Ci)}. Define a circle κi with center li and radius di.

Lemma 4. Any MEP in F with both endpoints on E(Ci) contains no points
from the inside of κi.

Proof. Suppose p is a MEP for a sensor field with sensibility exponent μ that
contains a point from the inside of κi. Then p contains a subpath p1 with end-
points, say, a and b on κi and the rest of p1 in the interior of κi. Consider the
following two cases:

(i) μ = 0. By (4), the portion p′1 on κi between a and b, being a minimum
exposure path, has a smaller exposure than p1. Replacing p1 by p′1 in p results
in a path with a smaller exposure than p, a contradiction.

(ii) μ > 0. Combine the proof of case (i) with Lemma 3. �	

Next we define S, the set of Steiner points for Vor(L). For each Ci ∈ Vor(L),
triangulate Ci by adding straightline segments joining li to each vertex of V (Ci).
Let Ti be the resulting set of triangles for Ci, let T be the resulting triangulation
of Vor(L), and let t ∈ Ti for some i. Let li, a, b be the vertices of t and d(li, a) ≥
d(li, b). Call (li, a) and (li, b) new edges and call (a, b) an old edge. Let l = d(li, a)
and let ε > 0. Define a set of Steiner points s0, s1, . . . , sλ on the segment lix such
that

d(li, s0) = di, d(li, sj−1) < d(li, sj), d(sj−1, sj) = εd(li, sj−1), (11)

for j = 1, . . . , λ, where λ is chosen such that d(li, sλ) ≤ l < d(li, sλ+1). (We used
Lemma 4 for justifying the definition of s0.) In a similar way we define SPs on
the segment liy. For the segment xy we define the SPs s′0, . . . , s′λ′ such that

s′0 = a, s′λ′ = b, d(li, s′j−1) < d(li, s′j), d(s′j−1, s
′
j) = εl for j = 1, . . . , λ′ − 1,

and d(s′λ′−1, s
′
λ′) ≤ εl.

Lemma 5. The number of SPs on the segments of the triangle t is O(ln(l/d)/ε).

Proof. From (11), d(li, sj) = (1+ε)jd. Since d(li, sλ) ≤ l, then (1+ε)λd ≤ l and

λ ≤ log1+ε(l/d) =
ln(l/d)

ln(1 + ε)
= O(ln(l/d)/ε).

Hence each of the segments lix and liy contains O(ln(l/d)/ε) SPs. The segment
xy contains �d(x, y)/(εl)� SPs, which number is O(1/ε), since d(x, y) < 2l. �	
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5.2 Description and Analysis of the Algorithm

Next we define a weighted graph Gε = (Vε, Eε) called approximation graph
with vertex set Vor(L) ∪ S ∪ {x, y} and an edge between any pair of vertices
corresponding to either points on different edges of the same triangle of T or to
the same new edge. Add also edges joining vertices x and y to the SPs from the
triangles containing x and y, respectively. Assign a weight wt(v, w) on each edge
(v, w) corresponding to the exposure along the minimum exposure path between
v and w in the triangle containing v and w, if v and w belong to different edges,
or along the segment containing v and w, otherwise.

Let Q denote the area of the region P and let q denote the minimum distance
between any two points of L.

Lemma 6. Gε has O(n/ε ln(Q/q)) vertices and O(n/ε2 ln2(Q/q)) edges.

Proof. By Lemma 5 each triangle contains O(ln(l/d)/ε) = O(ln(
√

Q/q)/ε) SPs,
as P has a bounded aspect ratio. Since |Vor(L)| = O(n), then the total number
of triangles is O(n). The lemma follows. �	

Given Gε, we compute an approximate minimum exposure path between x and
y as a shortest path pε in Gε between x and y. That shortest path can be
computed using Dijkstra’s shortest path algorithm [2] in O(mε +nε log nε) time,
where nε = |V (Gε)| and mε = |E(Gε)|.

Next we analyze how closely pε approximates the MEP. For each path p in
Gε let wt(p) denote the sum of the weights of the edges of p.

Lemma 7. For any ε > 0 there exists a path p in Gε between vertices x and y
such that wt(p) ≤ (1 + O(ε/α̌)) exp(MEP(x, y)), where α̌ is the minimum angle
of T .

Proof. Assume x and y belong to the interior of different triangles of T and
let Δx and Δy be the triangles containing x and y, respectively. According to
Lemma 2, MEP(x, y) consists of a sequence of subpaths p1, . . . , pλ in P , where
p1 and pλ are MEPs between x or y and a point from Δx or Δy, respectively, and
each of the other paths is either a MEP between points belonging to different
edges of a triangle, or is a subsegment of an edge of T . We will construct a
sequence p′1, . . . , p

′
λ of paths in Gε whose concatenation results in a path from x

to y and such that wt(p′i) ≤ (1 + O(ε/α̌))exp(pi) for any 1 ≤ i ≤ λ, which will
imply to validity of the lemma. (If x or y is on an edge of the triangulation, then
the corresponding paths p′1 or p′λ′ will be null paths.)

Choose any i ∈ [1, λ] and consider the case where pi connects points belonging
to different new edges (l, z1) and (l, z2) of a triangle Δ, where l ∈ L (Figure 2).
(The proofs for the other cases are similar.) Let h1 and h2 be the source and the
target of pi and let h′

1 and h′
2 be the Steiner points on the segments h1z1 and h2z2

that are closest to h1 and h2, respectively. Denote d(li, hj) = ηj and d(li, h′
j) = η′

j

for j = 1, 2. By (11) η′
j ≤ (1+ε)ηj for j = 1, 2. Define a polar coordinate system

with origin l and polar axis lz1. Let α = � z1lz2. Let pi = {(ρ(θ), θ) | θ ∈ [0, α]}.
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We will define a path p̄i = {(ρ(θ), θ) | θ ∈ [0, α]} with source (h′
1, 0) and target

(h′
2, α) that will be a ”scaled up” version of pi. More precisely, our goal is to

define a function k(θ) such that the path defined by the function ρ(θ) = k(θ)ρ(θ)
will have exposure at most 1 + O(ε/α̌) times the exposure of pi. We will show
that it suffices that the following conditions are satisfied:

(i) ρ(0) = η′
1 and ρ(α) = η′

2;

(ii) ρ−μ = (1 + O(ε))ρ−μ;

(iii)

√

1 +
(

ρ′

ρ

)2
≤ (1 + O(ε/α̌))

√

1 +
(

ρ′

ρ

)2

We will prove that the function k(θ) = α−θ
α

η′
1

η1
+ θ

α
η′
2

η2
satisfies those conditions.

A direct substitution shows that condition (i) is satisfied. Furthermore,

k(θ) ≤ α − θ

α
(1 + ε) +

θ

α
(1 + ε) = 1 + ε

and hence ρ/ρ ≤ 1 + ε and (ii) holds. Property (iii) follows from the previous
inequality k(θ) ≤ 1 + ε and from

k′(θ) =
(

η′
2

η2
− η′

1

η1

)
1
α

= O(ε/α̌).

By Properties (ii) and (iii)

exp(p̄i) =
∫ α

0
ρ̄−μ

√

1 +
(

ρ′

ρ

)2

dθ =
∫ α

0
(1 + O(ε/α̌))ρ−μ

√

1 +
(

ρ′

ρ

)2

dθ

= (1 + O(ε/α̌))exp(pi).

Since by (i) p′i and p̄i are paths with the same source and target h′
1 and h′

2,

wt(p′i) = exp(MEP (h′
1, h

′
2)) ≤ exp(p̄i) ≤ (1 + O(ε/α̌))exp(pi). (12)

To complete the proof, we add together the inequalities (12) for i = 1, . . . , λ. �	

Combining Lemma 7 with our analysis of the time complexity, we get the fol-
lowing theorem.

Theorem 1. Given a convex polygon P of bounded aspect ratio, a sensor field
F = (P, L, S) with nonnegative sensibility exponent, two points x and y from
P , and any ε > 0, a path p in P between x and y such that exp(p) ≤ (1 +
ε) exp(popt) can be found in O(n/ε2 ln2(ψ)α̌2) time, where popt = MEP(x, y, F ),
n = max{|L|, |P |}, ψ denotes the ratio of the area of P and the minimum dis-
tance between any two points of L, and α̌ is the minimum angle of the triangu-
lation of Vor(L).

Note that although the justification of Theorem 1 is relatively complex, the
implementation of the corresponding algorithm requires only running a shortest
path algorithm on Gε.
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5.3 Improving the Running Time

The graph Gε has a relatively high number of edges compared to the number of
its vertices. This is due to the fact that in each triangle of T the number of the
edges is roughly proportional to the square of the number of the Steiner points.
On the other hand, the set of all shortest paths in Gε has a structure that allows
an efficient implementations of Dijkstra’s shortest path algorithm that considers
only a fraction of the edges of Gε.

We will describe the idea of the algorithm BUSHWHACK [13] designed for
solving shortest path problems for Euclidean-like distances and show how it can
be modified in order to work in our case. The goal is to reduce the number of the
edges considered to be roughly proportional to the number of the SPs (within
a logarithmic factor). We will only consider here the case μ = 0, where μ is the
sensibility exponent from (1). The algorithm for arbitrary values of μ is similar,
but needs a more complicated analysis because of the lack of simple analogue of
the exposure formula (6).

The BUSHWHACK algorithm is based on Dijkstra’s algorithm, which divides
the vertices of the graph into two subsets: U , containing vertices to which the
exact distances dGε(x, s) from the source x have already been computed, and
V \ U , containing vertices to which approximate distances from x have been
assigned based on paths restricted to contain vertices from U only. At each
iteration a vertex s ∈ V \ U with a minimum current distance from x is moved
to U and the distances to the neighbors of s in V \ U are updated.

In order to introduce the BUSHWHACK modification to Dijkstra’s algorithm,
consider any triangle Δ ∈ T . If e is an edge of Δ, we denote by V (e) the set of
the vertices of Gε that correspond to SPs from e. For any two edges e and e′

from Δ and vertex v on e that is not on e′ we define the set I(v, e, e′) consisting
of all vertices z from e′ such that

dGε(x, v) + wt(v, z) ≤ dGε(x, v′) + wt(v′, z)

for any vertex v′ from e. The sets I(v, e, e′) can be used to reduce the number of
the edges in Δ considered by Dijkstra’s algorithm, since for any vertex z from
I(v, e, e′) there is a shortest paths from x to z that does not contain any vertex
from V (e) \ {v}. Hence all edges connecting a vertex from V (e) \ {v} to a vertex
from I(v, e, e′) can be ignored in the shortest paths computation.

In fact, the sets I(v, e, e′) are dynamic and are updated each time when a
new vertex from V (e) is added to U . In order to ensure that these sets can
be maintained efficiently, we need to prove that the following two properties
hold. Let π(v, w) denote the path in P resulting from replacing each edge of the
shortest path in Gε between v and w with the corresponding minimum exposure
path and let d′(v, w) denote the exposure of π(v, w) (which is also equal to the
distance between v and w in Gε).

Lemma 8. Let π1 = π(x, y1) and π2 = π(x, y2). Let, for i = 1, 2, πi intersects
the edges of a triangle Δ of T at vertices zi1 and zi2, respectively (Figure 1),
where all vertices zij, 1 ≤ i, j ≤ 2, are distinct. Then the segments z11z12 and
z21z22 do not intersect.
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Lemma 8 implies that each set I(v, e, e′) consists of consecutive points on e′,
i.e., no vertex of V (e) \ I(v, e, e′) is between two vertices from I(v, e, e′) on e′.
Hence I(v, e, e′) can be identified with an interval (e.g., a pair of points) on e′.
The next lemma can be used to compute and maintain such intervals efficiently
(in O(log |V (e′)|) time).

A segment s is called monotonic [13] with respect to a point z, if the expo-
sure from z to points of s is either monotonically increasing or monotonically
decreasing along s.

Lemma 9. If s is a segment belonging to a line containing the sensor location
li, then s can be divided into two monotonic segments with respect to any point
z in O(1) time.

Proof. The point z′ such that d(O, z′) = d(O, z) divides s into monotonic seg-
ments, if z is not on s. If z is on s, then s itself is monotonic. �	
The proof of an analogue of Lemma 9 for the case where the line containing s
does not contain li is more complex. Instead of proving such lemma, we notice
that we can use other properties to define the set I(v, e, e′) in the case where e′

is a segment of V (L) and v does not belong to e′. We consider the following two
cases for v.

(i) v = x. In this case we define I(v, e, e′) = e′ since U = {v}.
(ii) v �= x. Note that v can not be either of the endpoints of e as by assumption v

is not on e′ and v can not be a sensor location li as by construction L∩S = ∅
(see (11)). Then v is an internal point of e. Denote by v∗ the predecessor
of v on the shortest path from x to v. That vertex must have already been
determined by the algorithm since v ∈ U . Then v is the closest SP to the
intersection point between e and a MEP determined by formulas (4)–(5)
from v∗ to a point on e′. Then I(v, e, e′) can be determined as the smallest
segment on e′ whose endpoints are SPs and which contains the intersection
point of e′ and the MEP determined by v and v∗.

Further details on the data structures and the analysis of BUSHWHACK al-
gorithm can be found in [13]. We established the following result, which is an
improvement of Theorem 1 for the case μ = 0 by a factor of roughly Θ(1/ε).

Theorem 2. Given a polygon P of bounded aspect ratio, a sensor field F =
(P, L, S) with zero sensibility exponent, two points x and y from P , and any
ε > 0, a path p between x and y in P such that exp(p) ≤ (1+ ε) exp(popt) can be
found in O(m log m) time, where popt = MEP(x, y, F ), n = max{|L|, |P |}, m =
O(n/ε ln(ψ)α̌), ψ denotes the ratio of the area of P and the minimum distance
between any two points of L, and α̌ is the minimum angle of the triangulation
of Vor(L).

6 Conclusion

In this paper we developed the theoretic framework for designing approximation
algorithms for solving minimum exposure path problems for sensor networks.
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There are several interesting problems not discussed here that will be subject
of our ongoing and future work. These include removing the dependence of the
running time of Theorem 2 on α̌. Although such a dependence is characteristic
for such type of problems, e.g., [3], we will show in the full version of this paper
that it can be removed in our case. We also plan to use our MEP algorithms for
solving placement problems for sensor networks.
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