Skip to main content

Tree-Sequent Methods for Subintuitionistic Predicate Logics

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4548))

Abstract

Subintuitionistic logics are a class of logics defined by using Kripke models with more general conditions than those for intuitionistic logic. In this paper we study predicate logics of this kind by the method of tree-sequent calculus (a special form of Labelled Deductive System). After proving the completeness with respect to some classes of Kripke models, we introduce Hilbert-style axiom systems and prove their completeness through a translation from the tree-sequent calculi. This gives a solution to the problem posed by Restall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ardeshir, M., Ruitenburg, W.: Basic Propositional Calculus I. Math. Logic Quart 44, 317–343 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Belnap, N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)

    MATH  MathSciNet  Google Scholar 

  3. Celani, S., Jansana, R.: A closer look at some subintuitionistic logics. Notre Dame J. Formal Logic 42, 225–255 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Celani, S., Jansana, R.: Bounded distributive lattices with strict implication. Math. Logic Quart 51, 219–246 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Corsi, G.: Weak logics with strict implication. Z. Math. Logik Grundlag. Math 33, 389–406 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Došen, K.: Modal translations in K and D. In: de Rijke, M. (ed.) Diamonds and Defaults, pp. 103–127. Kluwer Academic Publishers, Boston (1993)

    Google Scholar 

  7. Gabbay, D.M.: Labelled Deductive Systems. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  8. Gabbay, D.M., Olivetti, N.: Algorithmic proof methods and cut elimination for implicational logics I: Modal implication. Studia Logica 61, 237–280 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hasuo, I., Kashima, R.: Kripke completeness of first-order constructive logics with strong negation. Log. J. IGPL 11, 615–646 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ishigaki, R., Kikuchi, K.: A tree-sequent calculus for a natural predicate extension of Visser’s propositional logic. To appear in Log. J. IGPL

    Google Scholar 

  11. Ishii, K., Kashima, R., Kikuchi, K.: Sequent calculi for Visser’s propositional logics. Notre Dame J. Formal Logic 42, 1–22 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kashima, R.: Sequent calculi of non-classical logics — Proofs of completeness theorems by sequent calculi (in Japanese). In: Proceedings of Mathematical Society of Japan Annual Colloquium of Foundations of Mathematics, pp. 49–67 (1999)

    Google Scholar 

  13. Kikuchi, K.: Dual-context sequent calculus and strict implication. Math. Logic Quart 48, 87–92 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kikuchi, K., Sasaki, K.: A cut-free Gentzen formulation of Basic Propositional Calculus. J. Logic Lang. Inform 12, 213–225 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Restall, G.: Subintuitionistic logics. Notre Dame J. Formal Logic 35, 116–129 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Suzuki, Y., Wolter, F., Zakharyaschev, M.: Speaking about transitive frames in propositional languages. J. Logic Lang. Inform 7, 317–339 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tanaka, Y.: Cut-elimination theorems for some infinitary modal logics. Math. Logic Quart 47, 327–339 (2001)

    Article  MATH  Google Scholar 

  18. Visser, A.: A propositional logic with explicit fixed points. Studia Logica 40, 155–175 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wansing, H.: Displaying as temporalizing, sequent systems for subintuitionistic logics. In: Akama, S. (ed.) Logic, Language and Computation, pp. 159–178. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  20. Zimmermann, E.: A predicate logical extension of a subintuitionistic propositional logic. Studia Logica 72, 401–410 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicola Olivetti

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishigaki, R., Kikuchi, K. (2007). Tree-Sequent Methods for Subintuitionistic Predicate Logics. In: Olivetti, N. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2007. Lecture Notes in Computer Science(), vol 4548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73099-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73099-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73098-9

  • Online ISBN: 978-3-540-73099-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics