Abstract
Subintuitionistic logics are a class of logics defined by using Kripke models with more general conditions than those for intuitionistic logic. In this paper we study predicate logics of this kind by the method of tree-sequent calculus (a special form of Labelled Deductive System). After proving the completeness with respect to some classes of Kripke models, we introduce Hilbert-style axiom systems and prove their completeness through a translation from the tree-sequent calculi. This gives a solution to the problem posed by Restall.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ardeshir, M., Ruitenburg, W.: Basic Propositional Calculus I. Math. Logic Quart 44, 317–343 (1998)
Belnap, N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)
Celani, S., Jansana, R.: A closer look at some subintuitionistic logics. Notre Dame J. Formal Logic 42, 225–255 (2001)
Celani, S., Jansana, R.: Bounded distributive lattices with strict implication. Math. Logic Quart 51, 219–246 (2005)
Corsi, G.: Weak logics with strict implication. Z. Math. Logik Grundlag. Math 33, 389–406 (1987)
Došen, K.: Modal translations in K and D. In: de Rijke, M. (ed.) Diamonds and Defaults, pp. 103–127. Kluwer Academic Publishers, Boston (1993)
Gabbay, D.M.: Labelled Deductive Systems. Oxford University Press, New York (1996)
Gabbay, D.M., Olivetti, N.: Algorithmic proof methods and cut elimination for implicational logics I: Modal implication. Studia Logica 61, 237–280 (1998)
Hasuo, I., Kashima, R.: Kripke completeness of first-order constructive logics with strong negation. Log. J. IGPL 11, 615–646 (2003)
Ishigaki, R., Kikuchi, K.: A tree-sequent calculus for a natural predicate extension of Visser’s propositional logic. To appear in Log. J. IGPL
Ishii, K., Kashima, R., Kikuchi, K.: Sequent calculi for Visser’s propositional logics. Notre Dame J. Formal Logic 42, 1–22 (2001)
Kashima, R.: Sequent calculi of non-classical logics — Proofs of completeness theorems by sequent calculi (in Japanese). In: Proceedings of Mathematical Society of Japan Annual Colloquium of Foundations of Mathematics, pp. 49–67 (1999)
Kikuchi, K.: Dual-context sequent calculus and strict implication. Math. Logic Quart 48, 87–92 (2002)
Kikuchi, K., Sasaki, K.: A cut-free Gentzen formulation of Basic Propositional Calculus. J. Logic Lang. Inform 12, 213–225 (2003)
Restall, G.: Subintuitionistic logics. Notre Dame J. Formal Logic 35, 116–129 (1994)
Suzuki, Y., Wolter, F., Zakharyaschev, M.: Speaking about transitive frames in propositional languages. J. Logic Lang. Inform 7, 317–339 (1998)
Tanaka, Y.: Cut-elimination theorems for some infinitary modal logics. Math. Logic Quart 47, 327–339 (2001)
Visser, A.: A propositional logic with explicit fixed points. Studia Logica 40, 155–175 (1981)
Wansing, H.: Displaying as temporalizing, sequent systems for subintuitionistic logics. In: Akama, S. (ed.) Logic, Language and Computation, pp. 159–178. Kluwer Academic Publishers, Boston (1997)
Zimmermann, E.: A predicate logical extension of a subintuitionistic propositional logic. Studia Logica 72, 401–410 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishigaki, R., Kikuchi, K. (2007). Tree-Sequent Methods for Subintuitionistic Predicate Logics. In: Olivetti, N. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2007. Lecture Notes in Computer Science(), vol 4548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73099-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-73099-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73098-9
Online ISBN: 978-3-540-73099-6
eBook Packages: Computer ScienceComputer Science (R0)