Abstract
Bi-intuitionistic logic is the extension of intuitionistic logic with a connective dual to implication. Bi-intuitionistic logic was introduced by Rauszer as a Hilbert calculus with algebraic and Kripke semantics. But her subsequent “cut-free” sequent calculus for BiInt has recently been shown by Uustalu to fail cut-elimination. We present a new cut-free sequent calculus for BiInt, and prove it sound and complete with respect to its Kripke semantics. Ensuring completeness is complicated by the interaction between implication and its dual, similarly to future and past modalities in tense logic. Our calculus handles this interaction using extended sequents which pass information from premises to conclusions using variables instantiated at the leaves of failed derivation trees. Our simple termination argument allows our calculus to be used for automated deduction, although this is not its main purpose.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Proc. Logic Colloquium, Keele, UK, 1993, pp. 1–32, OUP (1996)
Buisman, L., Goré, R.: A cut-free sequent calculus for bi-intuitionistic logic: extended version (2007), http://arxiv.org/abs/0704.1707
Crolard, T.: Subtractive logic. Theor. Comp. Sci. 254(1–2), 151–185 (2001)
Czermak, J.: A remark on Gentzen’s calculus of sequents. NDJFL 18(3) (1977)
Dragalin, A.: Mathematical Intuitionism: Introduction to Proof Theory. In: Translations of Mathematical Monographs, vol. 68, Cambridge Univ. Press, Cambridge (1988)
Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic 57(3), 795–807 (1992)
Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, et al. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)
Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, Springer, Heidelberg (1996)
Horrocks, I., Sattler, U., Tobies, S.: A PSpace-algorithm for deciding \({ALCNI}_{R^+}\)-satisfiability. LTCS-98-08, LuFG Theor. Comp. Sci, RWTH Aachen (1998)
Howe, J.M.: Proof search issues in some non-classical logics. PhD thesis, University of St Andrews (1998)
Rauszer, C.: A formalization of the propositional calculus of H-B logic. Studia Logica 33, 23–34 (1974)
Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. Dissertationes Mathematicae, 168, Inst. of Math, Polish Academy of Sciences (1980)
Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, Springer, Heidelberg (1998)
Śvejdar, V.: On sequent calculi for intuitionistic propositional logic. Commentationes Mathematicae Universitatis Carolinae 47(1), 159–173 (2006)
Szabo, M.E.: The Collected Papers of Gerhard Gentzen. Studies in Logic and the foundations of Mathematics. North-Holland, Amsterdam (1969)
Urbas, I.: Dual-intuitionistic logic. NDJFL 37(3), 440–451 (1996)
Uustalu, T.: Personal communication. via email (2004)
Uustalu, T.: Personal communication. via email (2006)
Uustalu, T., Pinto, L.: Days in logic ’06 conference abstract (accessed on 27th October 2006), http://www.mat.uc.pt/?kahle/dl06/tarmo-uustalu.pdf
Wolter, F.: On logics with coimplication. JPL 27(4), 353–387 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buisman, L., Goré, R. (2007). A Cut-Free Sequent Calculus for Bi-intuitionistic Logic. In: Olivetti, N. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2007. Lecture Notes in Computer Science(), vol 4548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73099-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-73099-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73098-9
Online ISBN: 978-3-540-73099-6
eBook Packages: Computer ScienceComputer Science (R0)