Skip to main content

A Cut-Free Sequent Calculus for Bi-intuitionistic Logic

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4548))

  • 452 Accesses

Abstract

Bi-intuitionistic logic is the extension of intuitionistic logic with a connective dual to implication. Bi-intuitionistic logic was introduced by Rauszer as a Hilbert calculus with algebraic and Kripke semantics. But her subsequent “cut-free” sequent calculus for BiInt has recently been shown by Uustalu to fail cut-elimination. We present a new cut-free sequent calculus for BiInt, and prove it sound and complete with respect to its Kripke semantics. Ensuring completeness is complicated by the interaction between implication and its dual, similarly to future and past modalities in tense logic. Our calculus handles this interaction using extended sequents which pass information from premises to conclusions using variables instantiated at the leaves of failed derivation trees. Our simple termination argument allows our calculus to be used for automated deduction, although this is not its main purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Proc. Logic Colloquium, Keele, UK, 1993, pp. 1–32, OUP (1996)

    Google Scholar 

  2. Buisman, L., Goré, R.: A cut-free sequent calculus for bi-intuitionistic logic: extended version (2007), http://arxiv.org/abs/0704.1707

  3. Crolard, T.: Subtractive logic. Theor. Comp. Sci. 254(1–2), 151–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Czermak, J.: A remark on Gentzen’s calculus of sequents. NDJFL 18(3) (1977)

    Google Scholar 

  5. Dragalin, A.: Mathematical Intuitionism: Introduction to Proof Theory. In: Translations of Mathematical Monographs, vol. 68, Cambridge Univ. Press, Cambridge (1988)

    Google Scholar 

  6. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic 57(3), 795–807 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, et al. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)

    Google Scholar 

  8. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, Springer, Heidelberg (1996)

    Google Scholar 

  9. Horrocks, I., Sattler, U., Tobies, S.: A PSpace-algorithm for deciding \({ALCNI}_{R^+}\)-satisfiability. LTCS-98-08, LuFG Theor. Comp. Sci, RWTH Aachen (1998)

    Google Scholar 

  10. Howe, J.M.: Proof search issues in some non-classical logics. PhD thesis, University of St Andrews (1998)

    Google Scholar 

  11. Rauszer, C.: A formalization of the propositional calculus of H-B logic. Studia Logica 33, 23–34 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. Dissertationes Mathematicae, 168, Inst. of Math, Polish Academy of Sciences (1980)

    Google Scholar 

  13. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Śvejdar, V.: On sequent calculi for intuitionistic propositional logic. Commentationes Mathematicae Universitatis Carolinae 47(1), 159–173 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Szabo, M.E.: The Collected Papers of Gerhard Gentzen. Studies in Logic and the foundations of Mathematics. North-Holland, Amsterdam (1969)

    Google Scholar 

  16. Urbas, I.: Dual-intuitionistic logic. NDJFL 37(3), 440–451 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Uustalu, T.: Personal communication. via email (2004)

    Google Scholar 

  18. Uustalu, T.: Personal communication. via email (2006)

    Google Scholar 

  19. Uustalu, T., Pinto, L.: Days in logic ’06 conference abstract (accessed on 27th October 2006), http://www.mat.uc.pt/?kahle/dl06/tarmo-uustalu.pdf

  20. Wolter, F.: On logics with coimplication. JPL 27(4), 353–387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicola Olivetti

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buisman, L., Goré, R. (2007). A Cut-Free Sequent Calculus for Bi-intuitionistic Logic. In: Olivetti, N. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2007. Lecture Notes in Computer Science(), vol 4548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73099-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73099-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73098-9

  • Online ISBN: 978-3-540-73099-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics