Skip to main content

Remarks on Semantic Completeness for Proof-Terms with Laird’s Dual Affine/Intuitionistic λ-Calculus

  • Chapter
Rewriting, Computation and Proof

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4600))

  • 360 Accesses

Abstract

The purpose of this note is to give a demonstration of the completeness theorem of type assignment system for λ-terms of [Hindley 83] and [Coquand 05] with two directions of slight extensions. Firstly, using the idea of [Okada 96], [Okada-Terui 99] and [Hermant-Okada 07], we extend their completeness theorem to a stronger form which implies a normal form theorem. Secondly, we extend the simple type (the implicational fragment of intuitionistic logic) framework of [Hindley 83] and [Coquand 05] to a linear (affine) types (the \(\{\mathbin{-\mkern-3mu\circ} ,{\rm \&},\rightarrow\}\)-fragment of affine logic) framework of [Laird 03, 05].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michele, V.: Abrusci, Sequent calculus for intuitionistic linear propositional logic, Mathematical Logic, Plenum, New York, pp. 223–242 (1990)

    Google Scholar 

  2. Barber, A.: Dual Intuitionistic Linear Logic, Technical Report ECS-LFCS-96-347, University of Edinburgh (1996)

    Google Scholar 

  3. Barendregt, H.P.: Lambda Calculi with Types. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of logic in computer science, vol. 2, pp. 117–309. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Coquand, T.: Completeness Theorems and lambda-Calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 1–9. Springer, Heidelberg (2005)

    Google Scholar 

  5. Michael, J.: Lambda-Calculus Schemata. Lisp. and Symbolic Computation 6(3-4), 259–288 (1993)

    Article  Google Scholar 

  6. Girard, J.-Y.: Linear Logic, Theoretical Computer Science, vol. 50 (1987)

    Google Scholar 

  7. Hasegawa, M.: Linearly used effects: monadic and CPS transformations into the linear lambda calculus. In: Hu, Z., Rodríguez-Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 167–182. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Hasegawa, M.: Classical linear logic of implications. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 458–472. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Hermant, O., Okada, M.: A semantics for cut elimination in intensional higher-order Linear Logic (in preparation, 2007)

    Google Scholar 

  10. Hindley, J.R.: The Completeness Theorem for Typing lambda-Terms. Theoretical Computer Science 22, 1–17 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hindley, J.R., Seldin, J.P.: Introduction to Combinators and Lambda-Calculus. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  12. Hyland, J.M.E., Luke, C.-H.: On Full Abstraction for PCF: I, II, and III. Information and Computation 163(2), 285–408 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Laird, J., Game, A.: Semantics of Linearly Used Continuations. In: Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS, vol. 2620, pp. 313–327. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Laird, J.: Game Semantics and linear CPS interpretation. Theoretical Computer Science 333, 199–224 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive definitions, In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinabian Logic Symposium, North-Holland, pp. 179–216 (1971)

    Google Scholar 

  16. Mitchell, J.C.: Type Systems for Programming Languages, Handbook of Theoretical Computer Science, vol. B, pp. 365–458 (1990)

    Google Scholar 

  17. O’Hearn, P.W., Riecke, J.G.: Kripke Logical Relations and PCF. Information and Computation 120(1), 107–116 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Okada, M.: Phase semantics for higher order completeness, cut-elimination and normalization proofs (Extended Abstract). Electronic Notes in Theoretical Computer Science 3, 22 (1996)

    Article  MathSciNet  Google Scholar 

  19. Okada, M.: Phase semantic cut-elimination and normalization proofs of first- and higher-order linear logic. Theoretical Computer Science 227, 333–396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Okada, M.: A Uniform semantic proof for cut-elimination and completeness of various first and higher order logics. Theoretical Computer Science 281, 471–498 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Okada, M.: Intuitionistic logic and linear logic. La. revue internationale de philosophie, special issue ”Intuitionism” 230, 449–481 (2004)

    Google Scholar 

  22. Okada, M., Terui, K.: The Finite Model Property for Various Fragments of Intuitionistic Linear Logic. Journal of Symbolic Logic 64, 790–802 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Plotkin, G.D.: Call-by-Name, Call-by-Value and the lambda-Calculus. Theoretical Computer Science 1(2), 125–159 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hubert Comon-Lundh Claude Kirchner Hélène Kirchner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okada, M., Takemura, R. (2007). Remarks on Semantic Completeness for Proof-Terms with Laird’s Dual Affine/Intuitionistic λ-Calculus. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds) Rewriting, Computation and Proof. Lecture Notes in Computer Science, vol 4600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73147-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73147-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73146-7

  • Online ISBN: 978-3-540-73147-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics