Abstract
We summarize several characterizations, inclusions, and separations on fragments of first-order logic over words and Mazurkiewicz traces. The results concerning Mazurkiewicz traces can be seen as generalizations of those for words. It turns out that over traces it is crucial, how easy concurrency can be expressed. Since there is no concurrency in words, this distinction does not occur there. In general, the possibility of expressing concurrency also increases the complexity of the satisfiability problem.
In the last section we prove an algebraic and a language theoretic characterization of the fragment Σ 2[E] over traces. Over words the relation E is simply the order of the positions. The algebraic characterization yields decidability of the membership problem for this fragment. For words this result is well-known, but although our proof works in a more general setting it is quite simple and direct. An essential step in the proof consists of showing that every homomorphism from a free monoid to a finite aperiodic monoid M admits a factorization forest of finite height. We include a simple proof that the height is bounded by 3|M|.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cartier, P., Foata, D. (eds.): Problèmes combinatoires de commutation et réarrangements. Lecture Notes in Mathematics, vol. 85. Springer, Heidelberg (1969)
Chalopin, J., Leung, H.: On factorization forests of finite height. Theoretical Computer Science 310(1-3), 489–499 (2004)
Colcombet, T.: On Factorization Forests. Technical report, number hal-00125047, Irisa, Rennes (2007)
Diekert, V., Gastin, P.: LTL is expressively complete for Mazurkiewicz traces. Journal of Computer and System Sciences 64, 396–418 (2002)
Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete for Mazurkiewicz trace. Information and Computation 204, 1597–1619 (2006)
Diekert, V., Horsch, M., Kufleitner, M.: On first-order fragments for Mazurkiewicz traces. In: Fundamenta Informaticae (to appear)
Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)
Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Computer Science 154, 67–84 (1996)
Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press, New York and London (1976)
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, ch. 16, pp. 995–1072. Elsevier Science Publisher B.V, Amsterdam (1990)
Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary temporal logic. Information and Computation 179(2), 279–295 (2002)
Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects. Clarendon Press, Oxford (1994)
Gastin, P., Kuske, D.: Satisfiability and model checking for MSO-definable temporal logics are in PSPACE. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, Springer, Heidelberg (2003)
Thomas, W.: Languages, automata and logic. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, Springer, Berlin Heidelberg (1997)
Guaiana, G., Restivo, A., Salemi, S.: Star-free trace languages. Theoretical Computer Science 97, 301–311 (1992)
Keller, R.M.: Parallel program schemata and maximal parallelism I. Fundamental results. Journal of the Association for Computing Machinery 20(3), 514–537 (1973)
Kufleitner, M.: Logical Fragments for Mazurkiewicz Traces: Expressive Power and Algebraic Characterizations. Universität Stuttgart, Dissertation (2006)
Kufleitner, M.: Polynomials, fragments of temporal logic and the variety DA over traces. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, Springer, Heidelberg (2006)
Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus (1977)
Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets, Applications and Relationship to other Models of Concurrency. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)
Pin, J.É.: Varieties of Formal Languages. North Oxford Academic, London (1986)
Pin, J.-É.: A variety theorem without complementation. In: Russian Mathematics (Izvestija vuzov.Matematika), vol. 39, pp. 80–90 (1995)
Pin, J.É., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous concatenation. Journal of Pure. and Applied Algebra 52, 297–311 (1988)
Pin, J.É., Weil, P.: Polynominal closure and unambiguous product. Theory Comput. Syst. 30(4), 383–422 (1997)
Schützenberger, M.P.: Sur le produit de concatenation non ambigu. Semigroup Forum 13, 47–75 (1976)
Simon, I.: Factorization forests of finite height. Theoretical Computer Science 72(1), 65–94 (1990)
Sistla, A.P., Clarke, E.: The complexity of propositional linear time logic. Journal of the Association for Computing Machinery 32, 733–749 (1985)
Stockmeyer, L.: The complexity of decision problems in automata theory and logic. PhD thesis, TR 133, MIT, Cambridge (1974)
Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston, Basel and Berlin (1994)
Tesson, P., Thérien, D.: Diamonds are Forever: The Variety DA. In: dos Gomes Moreira da Cunha, G.M., da Silva, P.V.A., Pin, J.É. (eds.) Semigroups, Algorithms, Automata and Languages, Coimbra (Portugal), pp. 475–500. World Scientific, Singapore (2002)
Thiagarajan, P.S., Walukiewicz, I.: An expressively complete linear time temporal logic for Mazurkiewicz traces. In: Proc. of LICS 1997, pp. 183–194 (1997)
Thomas, W.: Languages, automata and logic. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, Springer, Heidelberg (1997)
Weis, P., Immerman, N.: Structure theorem and strict alternation hierarchy for FO 2 on words. Technical report, Department of Computer Science University of Massachusetts, Amherst (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diekert, V., Kufleitner, M. (2007). On First-Order Fragments for Words and Mazurkiewicz Traces. In: Harju, T., Karhumäki, J., Lepistö, A. (eds) Developments in Language Theory. DLT 2007. Lecture Notes in Computer Science, vol 4588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73208-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-73208-2_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73207-5
Online ISBN: 978-3-540-73208-2
eBook Packages: Computer ScienceComputer Science (R0)