Skip to main content

Bisimulation Minimisation for Weighted Tree Automata

  • Conference paper
Developments in Language Theory (DLT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4588))

Included in the following conference series:

Abstract

We generalise existing forward and backward bisimulation minimisation algorithms for tree automata to weighted tree automata. The obtained algorithms work for all semirings and retain the time complexity of their unweighted variants for all additively cancellative semirings. On all other semirings the time complexity is slightly higher (linear instead of logarithmic in the number of states). We discuss implementations of these algorithms on a typical task in natural language processing.

This work was partially supported by NSF grant IIS-0428020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. In: Kohavi, Z. (ed.) Theory of Machines and Computations, Academic Press, London (1971)

    Google Scholar 

  2. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proc. 13th Annual Symp. Foundations of Computer Science, pp. 125–129. IEEE Computer Society, Los Alamitos (1972)

    Google Scholar 

  3. Gramlich, G., Schnitger, G.: Minimizing nfas and regular expressions. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer, Heidelberg (2005)

    Google Scholar 

  4. Milner, R.: A Calculus of Communicating Systems. Springer Verlag, Heidelberg (1982)

    Google Scholar 

  5. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoretical Computer Science 18, 115–148 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó (1984)

    Google Scholar 

  7. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 1–68. Springer Verlag, Heidelberg (1997)

    Google Scholar 

  8. Eilenberg, S. (ed.): Automata, Languages, and Machines. Pure and Applied Mathematics, vol. A.59. Academic Press, London (1974)

    MATH  Google Scholar 

  9. Buchholz, P.: Bisimulation relations for weighted automata (unpublished, 2007)

    Google Scholar 

  10. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimisation of tree automata. Technical Report ISI-TR-633, U. So. California (2007)

    Google Scholar 

  11. Kozen, D.: On the Myhill-Nerode theorem for trees. Bulletin of the EATCS 47, 170–173 (1992)

    MATH  Google Scholar 

  12. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 146–158. Springer Verlag, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Automata, Languages and Combinatorics (to appear, 2007)

    Google Scholar 

  14. Högberg, J., Maletti, A., May, J.: Bisimulation minimisation of weighted tree automata. Technical Report ISI-TR-634, U. So. California (2007)

    Google Scholar 

  15. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on Computing 16, 973–989 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Abdulla, P.A., Kaati, L., Högberg, J.: Bisimulation minimization of tree automata. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 173–185. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Borchardt, B.: The Theory of Recognizable Tree Series. Akademische Abhandlungen zur Informatik. Verlag für Wissenschaft und Forschung (2005)

    Google Scholar 

  18. Abdulla, P.A., Kaati, L., Högberg, J.: Bisimulation minimization of tree automata. Technical Report UMINF 06.25, Umeå University (2006)

    Google Scholar 

  19. Jelinek, F.: Continuous speech recognition by statistical methods. Proc. IEEE 64, 532–557 (1976)

    Article  Google Scholar 

  20. Galley, M., Hopkins, M., Knight, K., Marcu, D.: What’s in a translation rule? In: Proc. HLT-NAACL, pp. 273–280 ( 2004)

    Google Scholar 

  21. Yamada, K., Knight, K.: A syntax-based statistical translation model. In: Proc. ACL, pp. 523–530. Morgan Kaufmann, San Francisco (2001)

    Chapter  Google Scholar 

  22. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of english: The Penn treebank. Comp. Linguistics 19, 313–330 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tero Harju Juhani Karhumäki Arto Lepistö

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Högberg, J., Maletti, A., May, J. (2007). Bisimulation Minimisation for Weighted Tree Automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds) Developments in Language Theory. DLT 2007. Lecture Notes in Computer Science, vol 4588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73208-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73208-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73207-5

  • Online ISBN: 978-3-540-73208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics