Abstract
We propose conditional mutual information (cMI) as a new similarity measure for nonrigid image registration. We start from a 3D joint histogram incorporating, besides the reference and floating intensity dimensions, also a spatial dimension expressing the location of the joint intensity pair in the reference image. cMI is calculated as the expectation value of the conditional mutual information between the reference and floating intensities given the spatial distribution.
Validation experiments were performed comparing cMI and global MI on artificial CT/MR registrations and registrations complicated with a strong bias field; both a Parzen window and generalised partial volume kernel were used for histogram construction. In both experiments, cMI significantly outperforms global MI. Moreover, cMI is compared to global MI for the registration of three patient CT/MR datasets, using overlap and centroid distance as validation measure. The best results are obtained using cMI.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated multi-modality image registration based on information theory. In: Proceedings XIVth international conference on information processing in medical imaging - IPMI’95, June 26-30 1995. Computational Imaging and Vision, vol. 3, pp. 263–274. Kluwer Academic Publishers, Boston, MA (1995)
Viola, P., Wells, W.M.: Alignment by maximization of mutual information. In: ICCV ’95. Proceedings of the Fifth International Conference on Computer Vision, pp. 16–23. IEEE Computer Society, Los Alamitos (1995)
Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual information. Proceedings of the IEEE, vol. 91(10), pp. 1699–1722 (October 2003)
Pluim, J., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: A survey. IEEE Trans. Med. Imag. 22(8), 986–1004 (2003)
West, J., et al.: Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21(4), 554–566 (1997)
Gaens, T., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid multimodal image registration using mutual information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1099–1106. Springer, Heidelberg (1998)
Likar, B., Pernuš, F.: A hierarchical approach to elastic registration based on mutual information. Image and Vision Computing 19(1-2), 33–44 (2001)
Andronache, A., Cattin, P., Székely, G.: Local intensity mapping for hierarchical non-rigid registration of multi-modal images using the cross-correlation coefficient. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 26–33. Springer, Heidelberg (2006)
Studholme, C., Drapaca, C., Iordanova, B., Cardenas, V.: Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE Trans. Med. Imag. 25(5), 626–639 (2006)
Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Signal Processing 9(12), 2083–2099 (2000)
Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons, Chichester (1991)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imag. 16(2), 187–198 (1997)
Chen, H.M., Varshney, P.K.: Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation. IEEE Trans. Med. Imag. 22(9), 1111–1119 (2003)
Loeckx, D.: Automated Non-Rigid Intra-Patient Image Registration Using B-Splines. PhD thesis, Katholieke Universiteit Leuven (2006)
Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)
Slagmolen, P., Loeckx, D., Roels, S., Geets, X., Maes, F., Haustermans, K., Suetens, P.: Nonrigid registration of multitemporal CT and MR images for radiotherapy treatment planning. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 26–33. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., Suetens, P. (2007). Nonrigid Image Registration Using Conditional Mutual Information. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_60
Download citation
DOI: https://doi.org/10.1007/978-3-540-73273-0_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73272-3
Online ISBN: 978-3-540-73273-0
eBook Packages: Computer ScienceComputer Science (R0)