
C. Stephanidis (Ed.): Universal Access in HCI, Part I, HCII 2007, LNCS 4554, pp. 46–55, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Meta-design to Face Co-evolution and Communication
Gaps Between Users and Designers

Maria Francesca Costabile1, Daniela Fogli2, Rosa Lanzilotti1, Andrea Marcante3,
Piero Mussio3, Loredana Parasiliti Provenza3, and Antonio Piccinno1

1 Università di Bari, Dip. Informatica, via Orabona 4, 70125 Bari, Italy
{costabile,piccinno,lanzilotti}@di.uniba.it

2 Università di Brescia, DEA, via Branze 38, 25123 Brescia, Italy
fogli@ing.unibs.it

3 Università di Milano, DICO, via Comelico 39/41, 20135 Milano, Italy
{marcante,mussio,parasiliti}@dico.unimi.it

Abstract. The paper presents a meta-design approach to the design and
development of interactive systems, which bridges the communication gaps
arising among the members of an interdisciplinary design team including
different experts: software engineers, human-computer interaction experts, end
users as domain experts. Each experts is a stakeholder that proposes design
solutions from her/his perspective. The approach, which relies on a novel model
of Interaction and Co-Evolution processes, also supports co-evolution of users
and systems.

Keywords: Meta-design, Communication gap, Co-evolution, End-user
development.

1 Introduction

In the last years we have been working to the design of visual interactive systems
supporting collaborative human activities in different domains, such as medicine [6],
[7], geology [15], mechanical engineering [9]. All these situations confirm Fischer’s
claim that “complex design problems require more knowledge than any one single
person can possess, and the knowledge relevant to a problem is often distributed and
controversial” [13]. Indeed, the design of a visual interactive system supporting the
achievement of some activities in a domain of interest involves several stakeholders,
each one bringing her/his experience and view of the problems at hand. End users, as
the “owners of problems” [12], have their own knowledge and a domain-oriented
view of the tasks they have to perform (with the support of a computer) coming from
the practice in their working environment. Software engineers have the knowledge
about computer science methods and tools; they bring into software design and
development their own view of the activity to be supported, focusing on
implementation and efficiency aspects. Human-Computer Interaction (HCI) experts
give their contribution by guaranteeing system usability and accessibility.

 Meta-design to Face Co-evolution and Communication Gaps 47

In the collaboration among such stakeholders communication gaps arise because of
their different cultures; users, software engineers and HCI experts adopt different
approaches to abstraction and follow different reasoning strategies to modelling,
performing and documenting the tasks to be carried out in a given application domain;
additionally, they express and describe such tasks in their own language and jargon.

In this paper we describe a meta-design approach to overcome the communication
gaps so that visual interactive systems are capable to support people activities by
allowing users to act as designers, collaborating with HCI experts and software
engineers. The approach also permits to cope with another important phenomenon,
that is the co-evolution of users and systems [8]. After analysing communication gaps
and the co-evolution process in the next three sections, Section 5 and 6 are about
meta-design, first discussing how this concept is presented in literature, then
illustrating our specific approach. Section 7 concludes the paper.

2 Competent Practitioners as Users

People facing real world problems act as competent practitioners in that “they exhibit
a kind of knowing in practice, most of which is tacit” and they “reveal a capacity for
reflection on their intuitive knowing in the midst of action and sometimes use this
capacity to cope with the unique, uncertain, and conflicted situations of practice” [24].
Competent practitioners use their (tacit) knowledge to interpret documents that
support their activity and to understand how to use their tools. In the case of VIS
usage, a relevant part of the information conveyed by the system is ‘implicit
information’ [6], i.e., it is embedded in the actual shape of the displayed elements and
in the visual organization of the overall screen image and can only be understood by
users who possess domain (tacit) knowledge. For example, sequences of images
illustrating sequences of actions to be performed are organized according to the
reading habits of the expected user: from left to right for Western readers, from right
to left for Eastern ones. Furthermore, some icons, textual words, or images may be
meaningful only to experts in some discipline: icons representing cells in a liver
simulation may have a specific meaning only for physicians, while a dept core would
be meaningful only to geologists.

Moreover, complex activities must be carried out by experts characterized by
different cultures, executing different tasks. For example, in the medical domain,
neurologists cooperate with neuro-radiologists to interpret a Magnetic Resonance
Image (MRI) and define a diagnosis; they are members of two different communities
who must analyze and manage the same data set with different tools, on the basis of
different knowledge they possess and from different points of view. However, in this
activity, as in many others, members of different communities reach a common
understanding and co-operate to achieve a common purpose [10].

In a team of competent practitioners collaborating to solve a problem, each
practitioner is a stakeholder, owner of a specific knowledge that is crucial to the
resolution of the problem, but not sufficient to solve it. This situation is defined as
symmetry of ignorance [14], [23]; for overcoming it, the knowledge owned by every
stakeholder must be shared and integrated with the knowledge of the other
stakeholders. This holds for the design of interactive systems as well. The knowledge

48 M.F. Costabile et al.

of software engineers, relative to design methods and technologies, must be integrated
with knowledge about human factors, that HCI experts possess, and with knowledge
about application domain, that domain experts (end users) possess.

3 Communication Gaps Among Stakeholders

The collaboration among different stakeholders in a design team presents problems,
some due to communication gaps that exist among the team members, depending on
their different cultural backgrounds, experience and view of the problems at hand.

When interacting with a VIS, end users, as competent practitioners, use their
knowledge, both explicit and tacit, gained in their traditional and concrete work
environments, to understand how to operate in the new virtual environment. In
designing a VIS, software engineers bring into design their own tacit and explicit
knowledge and their own views of the activity to be implemented, which are different
from the knowledge and perspective of end users. Indeed, a gap exists between end
users and software engineers: they adopt different approaches to abstraction, since, for
instance, they have different notions about the details that can be abridged. Users
reason heuristically rather than algorithmically, using examples and analogies rather
than deductive abstract tools, documenting activities, prescriptions and results through
their own developed notations, articulating their activities according to their
traditional tools rather than computerized ones [18]. Moreover, end users and
software engineers possess distinct types of knowledge and express such knowledge
according to different languages and notations. As a consequence, end users do not
understand software engineers jargon and, conversely, software engineers often do
not understand user jargon [6]. On the other hand, HCI experts, often advocated to
represent user views in the design, own a specific knowledge - on system usability
and human factors, which is not the one of the users neither that of software engineers
[17]. Communication gaps, thus, exist among HCI experts, end users and software
engineers. HCI experts cannot take users’ place and, vice versa, users cannot act for
HCI experts: only users are able of reading the screen with user tacit knowledge, and
understanding what is misleading or difficult to interpret for them, but they are not
able to think as HCI experts and propose adequate HCI solutions [21]. Both end users
and HCI experts cannot take software engineers place: they cannot evaluate the
technical consequences of their proposals nor the influence on the adopted
technologies, i.e., they are not able to think as software engineers [18], who know the
technology but have difficulties in thinking as end users or HCI experts.

4 Co-evolution of Users and Systems

Many authors have pointed out an important phenomenon that must be considered in
Human-Computer Interaction: the user evolution. Nielsen says [19] that “using the
system changes the users, and as they change they will use the system in new ways”.
More recently, Norman says in [21] that “the individual is a moving target”. This
means that the design of an interactive system may be good today, but no longer
appropriate tomorrow. Once people gain proficiency in system usage, they would like
to use the system in different ways and need different interfaces than those they

 Meta-design to Face Co-evolution and Communication Gaps 49

required when they were novice users. These new uses of the system make the
working environment and organization evolve, and force the designers to adapt the
system to meet the needs of the end-user organization and environment. Therefore, it
is more appropriate to speak about co-evolution of users and systems [1], [4], [8]. In
our experiments with end users, we found that several usability problems depended
very much on the rigidity of the interactive systems, which are not able to take care of
the changes occurring in users’ activities and/or in their organizational context.
Indeed, two processes must be considered. The first process - the interactive use of
the system to perform activities in the application domain - occurs in a short time
scale: every activity is the result of a sequence of interaction cycles in which the user
applies her/his intuitive knowing and reflects on the obtained results, gaining new
experience. The second process is the co-evolution of user and system, which occurs
during the use of an interactive system in a longer time period. Co-evolution is also a
cyclic process in which two cycles are identified. The first one is the task-artifact
cycle, initially discussed in [5]: it refers to the fact that software artifacts are produced
to support some user tasks. However, such artifacts suggest new possible tasks so
that, to support these new tasks, new artifacts must be created. The second cycle
refers to the fact that technology advances give computer scientists ways of
improving interactive systems once they are already in use: this leads to new
interaction possibilities that might change users working habits. For example, recently
improved voice technology allows software engineers to add voice commands to their
systems and this might provide an easier and more natural way of interaction. Also
the user socio-organizational context is evolving during time, often requiring new
ways of performing tasks. Therefore, technology and socio-organizational contexts
repeatedly affect each other and this is modelled by a second co-evolution cycle in a
model of Interaction and Co-Evolution process we have proposed [8]. Software
engineers are required to produce the tools to support both interaction and
co-evolution processes, i.e., they must not only produce interactive systems
supporting user activities, but also the tools that permit to tailor [26] and evolve the
system according to user and organization evolution.

5 Meta-design

Software engineers and HCI experts are aware of the gaps existing among them and
of the need of communicating and sharing their different points of view during the
VIS design process. Lauesen [17] proposes the virtual window method, an early
graphical realization of the data presentation to bridge the gap between software
engineers and HCI experts. Folmer et al. [16] propose bridging patterns, which
describe a usability design solution and consist of a user interface part and an
architecture/implementation part. Borchers [3] recognizes the necessity of capturing
the knowledge of competent practitioners, together with HCI and software engineer
expertise by forging a lingua franca that makes the design experience understandable
by end users, HCI experts and software engineers.

However, the problem is how to embed the user implicit information in these
languages and how to make the stakeholders express their tacit knowledge. In user-
centered approaches, users are analyzed in order to acquire knowledge about work

50 M.F. Costabile et al.

activities, procedures, standards, users’ habits and needs [20]; they are also involved
in system evaluation. Participatory approaches include representatives of users in the
design team [25]. These approaches exploit techniques derived from social science,
which support communication and collaboration within the interdisciplinary team, for
prototyping [2].

Meta-design goes beyond, but includes the user-centered design approach and
participatory design. As defined in [12]: “meta-design characterizes objectives,
techniques, and processes for creating new media and environments allowing ‘owners
of problems’ (that is, end users) to act as designers. A fundamental objective of meta-
design is to create socio-technical environments that empower users to engage
actively in the continuous development of systems rather than being restricted to the
use of existing systems”. In this perspective, meta-design underlines a novel vision of
interactive systems that is at the basis of our approach. All stakeholders of an
interactive system are “owners” of a part of the problem and therefore they must all
contribute to system design. Moreover, co-evolution forces all stakeholders in a
continuous development of the system. This is carried out, on one hand, by end users,
who can perform tailoring activities to adapt the software environments they use to
their evolved needs and habits. On the other hand, end users should collaborate with
all other stakeholders not only in the design but also in the evolution of the interactive
system. For these reasons, stakeholders need different software environments, specific
to their culture, knowledge and abilities, through which each stakeholder can
contribute to shape software artifacts. They can also exchange among them the results
of these activities, to converge to a common design or evolve an existing system.

In light of these considerations, we view meta-design as a design paradigm that
includes end users as active members of the design team and provides all the
stakeholders in the team with suitable languages and tools to foster their personal
and common reasoning about the development of interactive software systems that
support end users’ work.

To support a meta-design approach, Fischer et al. have developed the Seeding,
Evolutionary growth, and Reseeding (SER) process model, which considers system
design as a three-phase activity: 1) seed creation, 2) seed evolutionary growth, 3)
reseeding phase [11]. The SER model is exploited in the development and evolution
of the so-called DODEs (Domain-Oriented Design Environments), which are
“software systems that support design activities within particular domains and that are
built specifically to evolve” [11]. Our approach has some similarities with this work,
but it emphasizes the need of providing personalized environments to all stakeholders,
in terms of language, notation, layout, and interaction possibilities.

6 The Software Shaping Workshop Methodology

In this section we describe the Software Shaping Workshop (SSW) methodology [6],
according to which an interactive system is developed as a network of different
software environments customized to the different stakeholder communities involved
in the use, design and evolution of the interactive system. We show how the SSW
methodology helps bridging the communication gaps among the different
stakeholders in the design team and supports the co-evolution of users and systems.

 Meta-design to Face Co-evolution and Communication Gaps 51

6.1 Software Shaping Workshops

In the SSW methodology, software environments are designed in analogy with artisan
workshops, i.e., small establishments where artisans, such as blacksmiths and joiners,
manipulate raw materials in order to manufacture their artifacts. At each step of their
activity, artisans can extract from a repository the tools necessary for the current
activity and set back those ones no more needed. In this way, every artisan adapts the
environment to her/his needs and has available all and only the tools needed in the
specific situation. By analogy, a software environment is designed as a virtual
workshop, in which users find a set of (virtual) tools whose shape, behaviour and
management are familiar to them. Such an environment allows users to carry out their
activities and adapt environment and tools without the burden of using a traditional
programming language, but using high level visual languages tailored to their needs.
Users get the feeling of simply manipulating the objects of interest in a way similar to
what they might do in the real world. Obviously, while traditional artisans shape real
supplies, users shape software artifacts. For this reason we call these environments
Software Shaping Workshops (SSWs) [6]. It is worth noting that virtual workshops
and the tools they provide are required to evolve more quickly than real ones in the
artisan workshops.

The SSW methodology provides each end user community with a workshop, called
application workshop, used by that community in its daily work. An application
workshop is customized to end users’ culture, background and skills, and can possibly
be tailored by the users themselves, also by creating new artifacts [6]. Application
workshops are not directly created (and successively evolved) by software engineers,
but their design, development and modification are carried out by an interdisciplinary
team that, besides software engineers, includes HCI experts and end user
representatives as domain experts. Each member of the team of experts use a type of
workshop, called system workshop, customized to her/his culture, background and
skills, in order to carry out the design, development and evolution of other workshops.

Overall, an interactive system to support the work practice in a given application
domain is not a monolithic piece of software, but it is developed as a network of
system and application workshops. The network allows the different stakeholders to
communicate and collaborate to the system design, implementation, use and evolution
by working with a workshop customized to them, they use their own languages and
notations, so that they are not disoriented and may overcome the gaps existing among
them. In general, a network is organized in levels. Fig. 1 presents a generic workshop
network including three levels:

a) Meta-design level. Software engineers use a system workshop, called W-SE,
to provide the software tools necessary to the development of the overall
interactive system, and to participate in the design, maintenance, and
validation of application and system workshops. More specifically, software
engineers produce the initial programs, which generate the SSWs to be used
and refined at lower levels, and participate in the maintenance of SSWs by
modifying them to satisfy specific requests coming from lower levels.

b) Design level. HCI experts, and domain experts cooperate in design,
maintenance, and validation of application workshops through their own
system workshops: domain experts belonging to the user community X

52 M.F. Costabile et al.

participate in the design and maintenance of the application workshop, W-
End-UserX, devoted to their community, using a system workshop, W-
ReprX, created by the software engineers and customized to their own needs,
culture and skills; they collaborate with HCI experts, who use their own
system workshop, W-HCI, to check the functionalities and behavior of the
application workshop, W-End-UserX, and adapt it.

c) Use level. End users belonging to the community X participate in task
achievement using the application workshop, W-End-UserX, devoted to their
community.

Fig. 1. A network of SSWs. Dashed arrows indicate exchange paths and plain arrows indicate
request and generation paths.

On the whole, both meta-design and design levels include all the system
workshops that support the design team in performing the activity of participatory
design. Such workshops can be considered User Interface Development Environments
(UIDEs) [22]. The novel idea is that the UIDEs used by domain experts are very
much oriented to the application domain and have specific functionalities, so that they
are easy to use by domain experts. On the other side, UIDE used by HCI experts are
very much oriented to the HCI domain and have specific HCI functionalities, so that
they are easy to use by HCI-experts; UIDE used by software engineers are very much
oriented to the software engineering domain and have specific software engineering
functionalities, so that they are easy to use by software engineers.

 Meta-design to Face Co-evolution and Communication Gaps 53

6.2 Communication Among SSW

We show in this section how the network organization supports co-evolution of users
and systems and overcomes the communication gaps among the different
stakeholders. In a SSW network, communication is guaranteed among workshops at
the same level and from a lower level to the upper one, and vice versa, by
communication paths. Through these paths, at the use level, end users exchange
among them data related with their current task, to achieve a common goal. At the
design level, HCI experts and domain experts exchange data and programs specifying
workshops. HCI experts and domain experts also communicate with software
engineers when it is necessary to forge new tools for their activities. Moreover,
requests for workshop modification or extension can be sent to the design level or to
the meta-design level from the lower one. Finally, when new tools or workshops are
created at high levels, they are made available to the lower ones. Precisely,
communication paths can be classified as:

1. exchange paths: they are the paths along which the exchanges of data and programs
occur. Exchange paths are those existing among the workshops at the same level;

2. request paths: they are concerned with the communications going from low levels
to higher levels; these communications trigger the co-evolution process, carrying
on the feedback from end users that may include requests for workshop
modification or extension;

3. generation paths: they represent the activity of using system workshops at a high
level to generate, modify or extend workshops to be used at the lower level; new or
evolved workshops are made available to lower levels along such generation paths.

The design team activity keeps going through the whole lifecycle of an interactive
system due to co-evolution. In a first phase, called design time, the design team
develops application workshops for the user communities addressed by the overall
system. Co-evolution determines the adaptation of the workshops to the requests
arising from new usage. Hence, at co-evolution time, thanks to the communication
possibilities the network offers, the design team receives user complaints and
suggestions about the workshops they interact with. Request paths are crucial to allow
an end user or a designer to notify her/his problems or requests to the higher level. In
particular, an end user or a designer finding problems during her/his interaction with a
workshop, has the possibility to annotate such problems in the workshop itself. The
problems might depend on either lack of functionalities or poor usability. Annotations
can be made available to all the experts reachable in the network along the request
paths. The experts analyze these annotations, communicate among them using
exchange paths (or request paths, if they in turn refer to the higher level), and agree
on a possible solution to the notified problems, thus updating the corresponding
workshop. Co-evolution is thus the result of a combination of generation, request and
exchange activities that are carried out throughout the lifecycle of the SSW network.

Moreover, the design team has the possibility to observe user activities, the new
usages of the system, the new procedures induced by the evolving organization.
Consequently, the design team updates the system and sometimes also the underlying
software technologies. In these phases, HCI experts take the responsibility of usability
and accessibility aspects, and software engineers take the responsibility of the

54 M.F. Costabile et al.

efficiency and implementation aspects. Both application and system workshops must
be maintained and co-evolved during the system lifecycle.

The fact that each stakeholder works with a customized workshop is the key to
overcome communication gaps. Indeed, such workshops allow the stakeholders to
interact by using languages, tools and working strategies that are familiar to them.

7 Conclusion

In real situations, interactive systems and their end users undergo a continuous co-
evolution. The need of keeping the systems usable and fully fledged requires that the
multidisciplinary team of designers remains active for the whole system lifecycle. Our
approach conceives an interactive system as a network of software environments
(the workshops), each customized to a specific community of stakeholders involved
in design and use of the system. This approach permits to bridge the communication
gaps existing among the different stakeholders and also to transfer as much as
possible the responsibility of system design and evolution to domain experts.

References

1. Arondi, S., Baroni, P., Fogli, D., Mussio, P.: Supporting co-evolution of users and systems
by the recognition of Interaction Patterns. In: Proc. AVI, pp. 177–189. ACM Press, New
York (2002)

2. Bødker, S., Grønbæk, K.: Cooperative prototyping: Users and designers in mutual activity.
International Journal of Man.-Machine Studies 34(3), 453–478 (1991)

3. Borchers, J.: A pattern approach to interactive design. John Wiley & Sons Ltd, New York
(2001)

4. Bourguin, G., Derycke, A., Tarby, J.C.: Beyond the Interface: Co-evolution inside
Interactive Systems - A Proposal Founded on Activity Theory. In: Proc. IHM-HCI, pp.
297–310 (2001)

5. Carroll, J.M., Rosson, M.B.: Deliberated Evolution: Stalking the View Matcher in design
space. Human-Computer Interaction 6(3 and 4), 281–318 (1992)

6. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End user Development: the Software
Shaping Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User
Development, pp. 183–205. Springer, Heidelberg (2006)

7. Costabile, M.F., Fogli, D., Lanzilotti, R., Mussio, P., Piccinno, A.: Supporting Work
Practice through End User Development Environments. Journal of Organizational and End
User Computing 18(4), 43–65 (2006)

8. Costabile, M.F., Fogli, D., Marcante, A., Piccinno, A.: Supporting Interaction and Co-
evolution of Users and Systems. In: Proc. AVI 2006, Venice, Italy, pp. 143–150. ACM
Press, New York (2006)

9. Costabile, M.F., Fogli, D., Fresta, G., Mussio, P., Piccinno, A.: Building environments for
End-User Development and Tailoring. Proc. HCC 03, Auckland, New Zealand 38, 28–31
(2003)

10. Dillon, A., Watson, C.: User analysis in HCI: the historical lesson from individual
differences research. International Journal of Human-Computer Studies 1996 45(6), 619–
637 (1996)

 Meta-design to Face Co-evolution and Communication Gaps 55

11. Fischer, G.: Seeding, Evolutionary Growth, and Reseeding: Constructing, Capturing, and
Evolving Knowledge in Domain-Oriented Design Environments. Automated Software
Engineering 5(4), 447–468 (1998)

12. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-Design: a
Manifesto For End user Development. Communications of the ACM 47(9), 33–37 (2004)

13. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User
Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp.
427–457. Springer, The Netherlands, Dordrecht (2006)

14. Fischer, G.: Symmetry of ignorance, social creativity, and meta-design. Knowledge.-Based
Syst. 13(7-8), 527–537 (2000)

15. Fogli, D., Fresta, G., Mussio, P.: On Electronic Annotations and its implementation. In:
Proc. AVI 2004, Gallipoli, Italy, pp. 98–102 May 25–28 (2004)

16. Folmer, E., van Welie, M., Bosch, J.: Bridging patterns: An approach to bridge gaps
between SE and HCI. Journal of Information and Software Technology 48(2), 69–89
(2005)

17. Lauesen, S.: User Interface design - A software engineering perspective. Addison-Wesley,
Reading (2005)

18. Majhew, D.J.: Principles and Guideline in Software User Interface Design. Prentice-Hall,
Englewood Cliffs (1992)

19. Nielsen, J.: Usability Engineering. Academic Press, San Diego, CA (1993)
20. Norman, D.A., Draper, S.W.: User-Centered System Design: New perspectives on Human-

Computer Interaction. Lawrence Erlbaum, Mahwah (1986)
21. Norman, D.A.: Human-centered design considered harmful. Interactions 12(4), 14–19

(2005)
22. Preece, J.: Human-Computer Interaction. Addison-Wesley, Reading (1994)
23. Rittel, H.: Second-Generation Design Methods. In: Cross, N. (ed.) Developments in

Design Methodology, pp. 317–327. John Wiley and Sons, New York, NY (1984)
24. Schön, D.: The Reflective Practitioner – How Professionals Think in Action, Basic Books

(1983)
25. Schuler, Namioka (eds.): Participatory Design - Principles and Practices. Lawrence

Erlbaum Associates, Hillsday, N.J (1993)
26. Stiemerling, O., Kahler, H., Wulf, V.: How to Make Software Softer – Designing

Tailorable Applications. In: Proc. ACM Symposium DIS, pp. 365–376. ACM Press, New
York (1997)

	Introduction
	Competent Practitioners as Users
	Communication Gaps Among Stakeholders
	Co-evolution of Users and Systems
	Meta-design
	The Software Shaping Workshop Methodology
	Software Shaping Workshops
	Communication Among SSW

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

