Abstract
We develop novelty detection techniques for the analysis of data from a large-vehicle engine turbocharger in order to illustrate how abnormal events of operational significance may be identified with respect to a model of normality. Results are validated using polynomial function modelling and reduced dimensionality visualisation techniques to show that system operation can be automatically classified into one of three distinct state spaces, each corresponding to a unique set of running conditions.
This classification is used to develop a regression algorithm that is able to predict the dynamical operating parameters of the turbocharger and allow the automatic detection of periods of abnormal operation. Visualisation of system trajectories in high-dimensional space are communicated to the user using parameterised projection techniques, allowing ease of interpretation of changes in system behaviour.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
Chen, H., Hakeem, I., Martinez-Botas, RF.: Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions. IMechE J. of Power and Energy 210(5), 397–408 (1996)
Clifton, D.A.: Condition Monitoring of Gas-Turbine Engines. Department of Engineering Science, University of Oxford, Transfer Report (2005)
Clifton, D.A., Bannister, P.R., Tarassenko, L.: Application of an Intuitive Novelty Metric for Jet Engine Condition Monitoring. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 1149–1158. Springer, Heidelberg (2006)
Clifton, D.A., Bannister, P.R., Tarassenko, L.: Learning Shape for Jet Engine Novelty Detection. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 828–835. Springer, Heidelberg (2006)
Clifton, L.A., Yin, H., Zhang, Y.: Support Vector Machine in Novelty Detection for Multi-channel Combustion Data. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 836–843. Springer, Heidelberg (2006)
Clifton, D.A., Bannister, P.R., Tarassenko, L.: A Framework for Novelty Detection in Jet Engine Vibration Data. In: Proc. 7th Int. Conf. on Damage Assessment of Structures, Torino, Italy (in press)
Hayton, P., Scholkopf, B., Tarassenko, L., Anuzis, P.: Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra. In: Proc. NIPS (2000)
Lowe, D., Tipping, M.E.: Feed-Forward Neural Networks and Topographic Mappings for Exploratory Data Analysis. Neural Computing and Applications 4(2), 83–85 (1996)
Nabney, I.T.: NETLAB, Algorithms for Pattern Recognition. Springer, New York (2002)
Nairac, A., Corbett-Clark, T.A., Ripley, R.M., Townsend, N.W., Tarassenko, L.: Choosing an Appropriate Model for Novelty Detection. In: IEE 5th International Conference on Artificial Neural Networks (1997)
Nelles, O., Sinsel, S., Isermann, R.: Local Basis Function Networks for Identification of a Turbocharger. In: Proc. UKACC Int. Conf. on Control, pp. 7–12 (1996)
Pantelelis, N.G., Kanarachos, A.E., Gotzias, N.: Neural Networks and Simple Models for the Fault Diagnosis of Naval Turbochargers. Mathematics and Computers in Simulation 51(3), 387–397 (2000)
Sammon, JW.: A Non-linear Mapping for Data Structure Analysis. IEEE Transactions on Computers (1969)
Tarassenko, L.: A Guide to Neural Computing Applications. Arnold (1998)
Tarassenko, L., Nairac, A., Townsend, N., Buxton, I., Cowley, P.: Novelty Detection for the Identification of Abnormalities. Int. J. Systems Science 31(7), 1427–1439 (2000)
Tarassenko, L., Hann, A., Patterson, A., Braithwaite, E., Davidson, K., Barber, V., Young, D.: BioSign: Multi-parameter Monitoring for Early Warning of Patient Deterioration. In: 3rd IEE Int. Sem. on Medical Applications of Signal Processing (2005)
Tarassenko, L., Hann, A., Young, D.: Integrated Monitoring and Analysis for Early Warning of Patient Deterioration. British J. of Anaesthesia 97(1), 64–68 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Clifton, D.A., Bannister, P.R., Tarassenko, L. (2007). Novelty Detection in Large-Vehicle Turbocharger Operation. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_59
Download citation
DOI: https://doi.org/10.1007/978-3-540-73325-6_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73322-5
Online ISBN: 978-3-540-73325-6
eBook Packages: Computer ScienceComputer Science (R0)