Abstract
Social networks have been working as a medium to provide cooperative interactions between people. However, as some of users take malicious actions, the social network potentially contains some risks (e.g., information distortion). In this paper, we propose a robust information diffusion (or propagation) model to detect malicious peers on social network. Especially, we apply statistical sequence analysis to discover a peculiar patterns on recommendation flows. Through two experimentation, we evaluated the performance of risk discovery on social network.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ohsawa, Y.: Chance discoveries for making decisions in complex real world. New Generation Computing 20(2), 143–164 (2002)
Kim, H.J., Jung, J.J., Jo, G.: Conceptual framework for recommendation system based on distributed user ratings. In: Li, M., Sun, X.-H., Deng, Q.-n., Ni, J. (eds.) GCC 2003. LNCS, vol. 3032, pp. 115–122. Springer, Heidelberg (2004)
Jung, J.J.: Visualizing recommendation flow on social network. Journal of Universal Computer Science 11(11), 1780–1791 (2005)
Vidal, J.M.: A protocol for a distributed recommender system. In: Falcone, R., Barber, S., Sabater-Mir, J., Singh, M.P. (eds.) Trusting Agents for Trusting Electronic Societies. LNCS (LNAI), vol. 3577, pp. 200–217. Springer, Heidelberg (2005)
Borgatti, S.P.: Centrality and network flow. Social Networks 27(1), 55–71 (2005)
Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B.M., Herlocker, J.L., Riedl, J.: Combining collaborative filtering with personal agents for better recommendations. In: Proceedings of the AAAI/IAAI, pp. 439–446 (1999)
Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the World Wide Web Conference, pp. 285–295 (2001)
Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1963)
Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Computing 13(3-5), 274–307 (2002)
Nguyen, N.T.: Consensus system for solving conflicts in distributed systems. Information Science 147(1-4), 91–122 (2002)
Jung, J.J.: Semantic preprocessing of web request streams for web usage mining. Journal of Universal Computer Science 11(8), 1383–1396 (2005)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co, New York (1979)
Jordan, K., Hauser, J., Foster, S.: The augmented social network: Building identity and trust into the next-generation internet. First Monday 8(8) (2003)
O’Donovan, J., Smyth, B.: Trust no one: Evaluating trust-based filtering for recommenders. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05), Professional Book Center, pp. 1663–1665 (2005)
Jung, J.J.: Ontological framework based on contextual mediation for collaborative information retrieval. Information Retrieval 10(1), 85–109 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Jung, J.J., Jo, GS. (2007). Risk Discovery Based on Recommendation Flow Analysis on Social Networks. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_87
Download citation
DOI: https://doi.org/10.1007/978-3-540-73325-6_87
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73322-5
Online ISBN: 978-3-540-73325-6
eBook Packages: Computer ScienceComputer Science (R0)