
M.J. Smith, G. Salvendy (Eds.): Human Interface, Part I, HCII 2007, LNCS 4557, pp. 604–612, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Knowledge Management in the Development of
Optimization Algorithms

Broderick Crawford1,2, Carlos Castro2, and Eric Monfroy2,3,*

1 Pontificia Universidad Católica de Valparaíso, PUCV, Chile
FirstName.Name@ucv.cl

2 Universidad Técnica Federico Santa María, Valparaíso, Chile
FirstName.Name@inf.utfsm.cl

3 LINA, Université de Nantes, France
FirstName.Name@univ-nantes.fr

Abstract. This paper captures our experience developing Algorithms to solve
Combinatorial Problems using different techniques. Because it is a Software
Engineering problem, then to find better ways of developing algorithms, solvers
and metaheuristics is our interest too. Here, we fixed some concepts from
Knowledge Management and Software Engineering applied in our work.

Keywords: Knowledge Management, Software Engineering, Agile Develop-
ment, Creativity, Optimization Algorithms.

1 Introduction

Solving Optimization Problems requires more knowledge than any single person can
possess. It requires the collaboration of numerous individuals with complementary
skills. The necessary resources to solve problems are distributed among the stake-
holders and creative solutions emerge out of collaborative work. Creative thinking is
an area that has been ignored in the development of Optimization Algorithms. Never-
theless, its successful application in the real world depends on a high degree of crea-
tivity and innovation [23]. The development of Optimization Algorithms and
Metaheuristics to solve Combinatorial Problems assumes the same connotations it as-
sumes in the field of Software Engineering. Then, the software development life cycle
of them might be quite diverse and different models from other fields can be appro-
priate. This paper captures our experience with valuable concepts from Knowledge
Management and Software Engineering applied when we are developing algorithms.

In the last time Optimization Algorithms and Metaheuristics have grown to be an
important paradigm in solving large scale combinatorial optimization problems and
rapid prototyping of them is an important topic of research today. Clearly, this is a
Software Engineering problem, then a vision of the methodologies that improve pro-
ductivity and quality of software is absolutely necessary to find better ways of devel-
oping this kind of solvers.

* The first author has also been partially supported by the project PUCV 209.473/2006. The

second author has also been partially supported by the Chilean National Science Fund through
the project FONDECYT 1070268.

 Knowledge Management in the Development of Optimization Algorithms 605

Software Engineering is a creative and knowledge intensive process that includes
some aspects of Knowledge Management (KM) in all phases: eliciting requirements,
design, construction, testing, implementation, maintenance, and project management.
No worker of a development project possess all the knowledge required for fulfilling
all activities. This underlies the need for knowledge sharing support to share domain
expertise between the customer and the development team [6]. The traditional ap-
proaches (often referred to as plan-driven, task-based or Tayloristic), like the waterfall
model and its variances, facilitate knowledge sharing primarily through documenta-
tion. They also promote usage of role based teams and detailed plans of the entire
software development life-cycle. It shifts the focus from individuals and their creative
abilities to the processes themselves. In contrary, agile methods emphasise and value
individuals and interactions over processes.

There are few studies reported on the importance of creativity in software devel-
opment. In management and business, researchers have done much work about crea-
tivity and obtained evidence that the employees who had appropriate creativity
characteristics, worked on complex, challenging jobs, and were supervised in a sup-
portive, noncontrolling fashion, produced more creative work. Since human creativity
is thought as the source to resolve complex problem or create innovative products,
one possibility to improve the software development process is to design a process
which can stimulate the creativity of developers. The agile principles and values have
realized the importance of collaboration and interaction in the software development
and, by other hand, creative work commonly involves collaboration in some form and
it can be understood as an interaction between an individual and a sociocultural con-
text, the study of the potential of techniques to foster creativity in software engineer-
ing is a very interesting issue [11].

We believe that in Optimization Algorithms development projects, a better under-
standing of some valuable and interdisciplinary concepts from Creative Solving Prob-
lem [23] and Knowledge Management [18] offers important insights about the use of
Software Engineering methodologies.

This paper is organised as follows: Section 2 is dedicated to the presentation of
Knowledge Management in Software Engineering. We include a short overview of
basic concepts from the area of Knowledge Management in Section 3, presenting the
two approaches to KM: Product and Process. A Background on Agile Development
Approaches is given in section 4. Section 5 introduces the relevance of Creativity in
Software Development. Finally, in Section 6 we conclude the paper and give some
perspectives for future research.

2 Knowledge Management in Software Engineering

The main argument to Knowledge Management in software engineering is that it is a
creative and knowledge intensive activity. Software development is a process where
every person involved has to make a large number of decisions and individual knowl-
edge has to be shared and leveraged at a project and organization level, and this is ex-
actly what KM proposes. People in such groups must collaborate, communicate, and
coordinate their work, which makes knowledge management a necessity. In software
development one can identify two types of knowledge: Knowledge embedded in the

606 B. Crawford, C. Castro, and E. Monfroy

products or artifacts, since they are the result of highly creative activities and Meta-
knowledge, that is knowledge about the products and processes. Some of the sources
of knowledge (artifacts, objects, components, patterns, templates and containers) are
stored in electronic form.

However, the majority of knowledge is tacit, residing in the brains of the employ-
ees. A way to address this problem can be to develop a knowledge sharing culture, as
well as technology support for knowledge management. There are several reasons to
believe that knowledge management for software engineering would be easier to im-
plement than in other organizations: technology is not be intimidating to software en-
gineers and they believe the tools will help them do a better job; all artifacts are
already in electronic form and can easily be distributed and shared; and the fact that
knowledge sharing between software engineers already does occur to a large degree
in many successful software collaborative projects [22].

3 A Framework for Knowledge Management

Knowledge Management focuses on corporate knowledge as a crucial asset of the en-
terprise and aims at the optimal use and development of this asset, now and in the fu-
ture. Knowledge Management has been the subject of much discussion over the past
decade and different KM life-cycles and strategies have been proposed. One of the
most widely accepted approaches to classifying knowledge from a KM perspective is
the Knowledge Matrix of Nonaka and Takeuchi [18]. This matrix classifies knowl-
edge as either explicit or tacit, and either individual or collective.

Nonaka and Takeuchi also proposes corresponding knowledge processes that trans-
form knowledge from one form to another: socialization (from tacit to tacit, whereby
an individual acquires tacit knowledge directly from others through shared experi-
ence, observation, imitation and so on); externalization (from tacit to explicit, through
articulation of tacit knowledge into explicit concepts); combination (from explicit to
explicit, through a systematization of concepts drawing on different bodies of explicit
knowledge); and internalization (from explicit to tacit, through a process of learning
by doing and through a verbalization and documentation of experiences). Nonaka and
Takeuchi model the process of organizational knowledge creation as a spiral in which
knowledge is amplified through these four modes of knowledge conversion. It is also
considered that the knowledge becomes crystallized within the organization at higher
levels moving from the individual through the group to organizational and even inter-
organizational levels [4].

To make social creativity a reality, Fisher [7] has explored the externalization sup-
porting social creativity. Externalizations support social creativity in the following
ways:

− they cause us to move from vague mental conceptualizations of an idea to a more
concrete representation of it

− they provide a means for others to interact with, react to, negotiate around, and
build upon an idea

− they allow more voices from other stakeholders to be brought in
− they create a common language of understanding

 Knowledge Management in the Development of Optimization Algorithms 607

Externalizations of individual knowledge make it possible to accumulate the
knowledge held by a group or community. An important challenge for social creativ-
ity is to capture a significant portion of the knowledge generated by work done within
a community.

3.1 Two Approaches to KM: Product and Process

Traditional methods of software development use a great amount of documentation
for capturing knowledge gained in the activities of a project life-cycle. In contrast, the
agile methods suggest that most of the written documentation can be replaced by en-
hanced informal communications among team members and customers with a
stronger emphasis on tacit knowledge rather than explicit knowledge. In the KM mar-
ket a similar situation exists and two approaches to KM have been mainly employed;
we will refer to them as the Product and the Process approaches. These approaches
adopt different perspectives in relation to documentation and interactions between the
stakeholders [16].

Knowledge as a product. The product approach implies that knowledge can be located
and manipulated as an independent object. Proponents of this approach claim that it is
possible to capture, distribute, measure and manage knowledge. This approach mainly
focuses on products and artefacts containing and representing knowledge.

Knowledge as a process. The process approach puts emphasis on ways to promote,
motivate, encourage, nurture or guide the process of learning, and abolishes the idea
of trying to capture and distribute knowledge. This view mainly understands KM as a
social communication process, which can be improved by collaboration and coopera-
tion support tools. In this approach, knowledge is closely tied to the person who de-
veloped it and is shared mainly through person-to-person contacts. This approach has
also been referred to as the Collaboration or Personalization approach. Choosing one
approach or other will be in relation to the characteristics of the organization, the pro-
ject and the people involved in each case [2].

4 Agile Methods

A new group of software development methodologies has appeared over the last few
years. For a while these were known as lightweight methodologies, but now the ac-
cepted term is Agile methodologies. The most common of them are: eXtreme Pro-
gramming, the Crystal Family, Agile Modeling, Adaptive Software Development,
Scrum, Feature Driven Development, Dynamic System Development Method [8].
There exist many variations, but all of them share the common principles and core
values specified in the Agile Manifesto [5]. Through this work they have come to
value individuals and interactions over processes and tools. Working software over
comprehensive documentation. Customer collaboration over contract negotiation. Re-
sponding to change over following a plan. These new methods attempt a useful com-
promise between no process and too much process, providing just enough process to
gain a reasonable payoff. The result of all of this is that agile methods have some sig-
nificant differences with the former engineering methods [8]:

608 B. Crawford, C. Castro, and E. Monfroy

Agile methods are adaptive rather than predictive. Engineering methods tend to
try to plan out a large part of the software process in great detail for a long span of
time, this works well until things change. So their nature is to resist change. Agile
methods, however, welcome change. They are processes that try to adapt and thrive
on change, even to the point of changing themselves.

Agile methods are people oriented rather than process oriented. The goal of engi-
neering methods is to define a process that will work well whoever happens to be using
it. Agile methods assert that no process will ever make up the skill of the development
team, so the role of a process is to support the development team in their work.

Most agile methodologies assume that change is inevitable, these methodologies
have the ability to address variance and adaptability within the processes. In [12]
Highsmith and Cockburn have fixed the role of creativity in agile teams assuming a
world view that organizations are complex adaptive systems. A complex adaptive sys-
tem is one in which decentralized, independent individuals interact in self organizing
ways, guided by a set of simple, generative rules, to create innovative, emergent re-
sults. Agile methods offer generative rules, a minimum set of things you must do un-
der all situations to generate appropriate practices for special situations. A team that
follows generative rules depends on individuals and their creativity to find ways to
solve problems as they arise. Creativity, not voluminous written rules, is the only way
to manage complex software development problems and diverse situations.

5 Creativity in Software Development

There are many definitions of creativity, we use some ideas from [9]: Creativity is de-
fined as the tendency to generate or recognize ideas, alternatives, or possibilities that
may be useful in solving problems, communicating with others, and entertaining our-
selves and others. There are three reasons why people are motivated to be creative:

− need for novel, varied, and complex stimulation
− need to communicate ideas and values
− need to solve problems

In order to be creative, you need to be able to view things in new ways or from a dif-
ferent perspective. Among other things, you need to be able to generate new possibili-
ties or new alternatives. Tests of creativity measure not only the number of
alternatives that people can generate but the uniqueness of those alternatives. The
ability to generate alternatives or to see things uniquely does not occur by change; it is
linked to other, more fundamental qualities of thinking, such as flexibility, tolerance
of ambiguity or unpredictability, and the enjoyment of things heretofore unknown.

In order to understand creativity in organizations, the use of a creativity manage-
ment framework may be useful. Amabile [1] had proposed a theory for the develop-
ment of creativity. In her framework, creativity is hypothesized as a confluence of
three kinds of resources:

− creativity-relevant skills (across domains)
− domain-relevant knowledge and skills (domain-specific)
− task motivation

 Knowledge Management in the Development of Optimization Algorithms 609

Domain-relevant resources include factual knowledge, technical skills and special
talents in the domain. Creativity-relevant resources include appropriate cognitive
style, personality trait, conducive work style and knowledge of strategies for generat-
ing novel ideas. In specific, the major features of the appropriate cognitive style are
the preference of breaking perceptual set and cognitive sets, keeping response options
open, suspending judgment, etc. Furthermore, Amabile had proposed that intrinsic
motivation was conducive to creativity; whereas extrinsic motivation was detrimental.
Concerning the nurturing of intrinsic motivation, she and others highlighted the im-
portance of promoting a playful attitude in the environment. Persons who are able to
maintain playfulness, may continue to focus on the interest and enjoyment they de-
rived from the task. They are more likely to keep their intrinsic motivation, even un-
der external constraints.

Then, according to the previous ideas the use of creativity in software development
teams is undeniable but requirements engineering is not recognized as a creative
process [14]. The importance of creativity has been investigated in all the phases of
software development process [10, 11] and focused in the requirements engineering
too [21, 15, 17]. Nevertheless, the use of techniques to foster creativity in require-
ments engineering is still shortly investigated. It is not surprising that the role of
communication and interaction is central in many of the creativity techniques. The
most popular creativity technique used for requirements identification is the classical
brainstorming and more recently, role-playing-based scenarios, storyboard-illustrated
scenarios, simulating and visualizing have been applied in an attempt to bring more
creativity to requirements elicitation. These techniques try to address the problem of
identifying the viewpoints of all the stakeholders [17]. However, in requirements en-
gineering the answers do not arrive by themselves, it is necessary to ask, observe, dis-
cover, and increasingly create requirements. If the goal is to build competitive and
imaginative products, we must make creativity part of the requirements process. In-
deed, the importance of creative thinking is expected to increase over the next decade
[13]. The industrial revolution replaced agriculture as the major economic activity,
and then information technology replaced industrial production. Now, the information
technology will be replaced with a new dominant economic activity focusing on crea-
tivity: The Conceptual Age. According to [19] we are moving from High Tech to
High Touch and High Concept. The skill of storytelling is now a mandatory business
skill. The workers in highest demand will be those with great social skills and a strong
drawing portfolio. With the prevalence of search engines, facts are abundant and free,
what is in demand now is the ability to put those facts in order and in context. The
shift of IT organizations toward the creative sector and companies striving to design
innovative products that combine and use existing technologies in unanticipated ways
is beginning to justify this prediction.

5.1 Inventing Requirements?

In [21, 20] very interesting open questions are proposed: Is inventing part of the
requirements activity? It is if we want to advance. So who does the inventing? We
can not rely on the customer to know what to invent. The designer sees his task as

610 B. Crawford, C. Castro, and E. Monfroy

deriving the optimal solution to the stated requirements. We can not rely on pro-
grammers because they are too far removed from the clients work to understand what
needs to be invented.

Requirements analysts are ideally placed to innovate. They understand the business
problem, have updated knowledge of the technology, will be blamed if the new prod-
uct does not please the customer, and know if inventions are appropriate to the work
being studied. In short, requirements analysts are the people whose skills and position
allows, indeed encourages, creativity.

In [3] the author, a leading authority on cognitive creativity, identifies basic types
of creative processes: exploratory creativity explores a possible solution space and
discovers new ideas; combinatorial creativity combines two or more ideas that already
exist to create new ideas; and transformational creativity changes the solution space to
make impossible things possible. Then, most Requirements Engineering activities are
exploratory, acquiring and discovering requirements and knowledge about the prob-
lem domain. And the Requirements Engineering practitioners have explicitly focused
on combinatorial and transformational creativity.

6 Conclusions and Future Directions

Human and social factors have a very strong impact on the success of software devel-
opment. This paper was focused on some aspects of Knowledge Management and
Creativity in the context of Optimization Algorithms development. In our main re-
search topic of interest we are trying to find better ways of developing Optimization
Algorithms. Because it is a Software Engineering problem, some ideas, concepts and
open issues about it are important in supporting of our work too. The development of
Optimization Algorithms is a field well suited for creative studies, since it is a crea-
tive activity where the problems often can only be solved through an iterative process
faciliting Knowledge Management and exploration of new ideas.

Agile methods emphasis on people, communities of practice, communication, and
collaboration in facilitating the practice of sharing tacit knowledge at a team level.
They also foster a team culture of knowledge sharing, mutual trust and care. Agile
development is not defined by a small set of practices and techniques. Agile devel-
opment defines a strategic capability, a capability to create and respond to change, a
capability to balance flexibility and structure, a capability to draw creativity and inno-
vation out of a development team, and a capability to lead organizations through tur-
bulence and uncertainty. They rough out blueprints (models), but they concentrate on
creating working software. They focus on individuals and their skills and on the in-
tense interaction of development team members among themselves and with custom-
ers and management.

The agile principles and values have recognized the importance of collaboration
and interaction in the software development team. Because creative work commonly
involves collaboration the study of techniques to foster creativity in software engi-
neering is very interesting. Agile process to be helpful to generate novel and useful
product. On the contrary, the discipline based work are perceived to be useless to pro-
duce novel products. The difference between them is that creative work can motivate
the generation of something new.

 Knowledge Management in the Development of Optimization Algorithms 611

Software development is a creative and knowledge intensive process that involves
the integration of a variety of business and technical knowledge, an understanding
from a Knowledge Management perspective offers important insights for designing
and implementing Optimization Algorithms and Metaheuristics.

References

1. Amabile, T.M.: Creativity in Context: Update to the Social Psychology of Creativity.
Westview Press (1996)

2. Apostolou, D., Mentzas, G.: Experiences from knowledge management implementations
in companies of the software sector. Business Process Management Journal, 9(3) (2003)

3. Boden, M.: The Creative Mind. Abacus (1990)
4. Bueno, E.: Knowledge management in the emerging strategic business process. Journal of

knowledge Management 7(3), 1–25 (2003)
5. Chau, T., Maurer, F.: Knowledge sharing in agile software teams. In: Lenski, W. (ed.)

Logic versus Approximation. LNCS, vol. 3075, pp. 173–183. Springer, Heidelberg (2004)
6. Chau, T., Maurer, F., Melnik, G.: Knowledge sharing: Agile methods vs tayloristic meth-

ods. In: Twelfth International Workshop on Enabling Technologies: Infrastructure for Col-
laborative Enterprises, WETICE, May 2003, pp. 302–307. IEEE Computer Society Press,
Los Alamitos (2003)

7. Fischer, G.: Social creativity: turning barriers into opportunities for collaborative design.
In: PDC 04: Proceedings of the eighth conference on Participatory design, pp. 152–161.
ACM Press, New York (2004)

8. Fowler, M.: The new methodology, Available (2001), at
 http://www.martinfowler.com/articles/newMethodology.html

9. Franken, R.E.: Human Motivation. Thomson Learning College (2002)
10. Glass, R.L.: Software creativity. Prentice-Hall, Englewood Cliffs (1995)
11. Gu, M., Tong, X.: Towards hypotheses on creativity in software development. In:

Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 47–61. Springer, Hei-
delberg (2004)

12. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation.
Computer 34(9), 120–127 (2001)

13. Maiden, N., Gizikis, A.: Where do requirements come from? IEEE Softw. 18(5), 10–12
(2001)

14. Maiden, N., Gizikis, A., Robertson, S.: Provoking creativity: Imagine what your require-
ments could be like. IEEE Software 21(5), 68–75 (2004)

15. Maiden, N., Robertson, S.: Integrating creativity into requirements processes: Experiences
with an air traffic management system. In: 13th IEEE International Conference on Re-
quirements Engineering (RE 2005), Paris, France, 29 August - 2 September 2005, pp.
105–116. IEEE Computer Society Press, Los Alamitos (2005)

16. Mentzas, G.: The two faces of knowledge management. International Consultant’s Guide,
pp. 10–11 (May 2000) Available at http//imu.iccs.ntua.gr/Papers/O37-icg.pdf

17. Mich, L., Anesi, C., Berry, D.M.: Applying a pragmatics-based creativity fostering tech-
nique to requirements elicitation. Requir. Eng. 10(4), 262–275 (2005)

18. Nonaka, I., Takeuchi, H.: The Knowledge Creating Company. Oxford University Press,
Oxford (1995)

612 B. Crawford, C. Castro, and E. Monfroy

19. Pink, D.: A Whole New Mind: Moving from the Information Age to the Conceptual Age.
Riverhead Hardcover (March 2005)

20. Robertson, J.: Eureka! why analysts should invent requirements. IEEE Softw. 19(4), 20–
22 (2002)

21. Robertson, J.: Requirements analysts must also be inventors. Software, IEEE 22(1), 48–50
(2005)

22. Rus, I., Lindvall, M.: Knowledge management in software engineering. IEEE Soft-
ware 19(3), 26–38 (2002) Available at http://fcmd.umd.edu/mikli/RusLindvallKMSE.pdf

23. Vidal, V.V.: Creativity for operational researchers. Investigacao Operational 25(1), 1–24
(2005)

	Introduction
	Knowledge Management in Software Engineering
	A Framework for Knowledge Management
	Two Approaches to KM: Product and Process

	Agile Methods
	Creativity in Software Development
	Inventing Requirements?

	Conclusions and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

