Skip to main content

An Alternative Approach to Tagging

  • Conference paper
Natural Language Processing and Information Systems (NLDB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4592))

Abstract

NooJ is a linguistic development environment that allows users to construct large formalised dictionaries and grammars and use these resources to build robust NLP applications. NooJ’s approach to the formalisation of natural languages is bottom-up: linguists start by formalising basic phenomena such as spelling and morphology, and then formalise higher and higher linguistic levels, moving up towards the sentence level. NooJ provides parsers that operate in cascade at each individual level of the formalisation: tokenizers, morphological analysers, simple and compound terms indexers, disambiguation tools, syntactic parsers, named entities annotators and semantic analysers. This architecture requires NooJ’s parsers to communicate via a Text Annotation Structure that stores both correct results and erroneous hypotheses (to be deleted later).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chomsky, N.: Syntactic Structures. La Haye, Monton (1957)

    Google Scholar 

  2. Barker, K., Szpakowicz, S.: Semi-Automatic Recognition of Noun Modifier Relationships. In: Proceedings of COLING-ACL 1998, Montréal (1998)

    Google Scholar 

  3. Silberztein, M.: Les groupes nominaux productifs et les noms composés lexicalisés. In: Linguisticae Investigationes #17:2., John Benjamins, Amsterdam (1993)

    Google Scholar 

  4. Lewis, D., Sparck Jones, K.: Natural Language Processing for Information Retrieval. In: Communications of the ACM #39:1, ACM, New York (1996)

    Google Scholar 

  5. Church, K.: A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text. In: Proceedings of Second Conference on Applied Natural Language Processing (ANLP 1988), Austin TX (1988)

    Google Scholar 

  6. Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: the Penn Treebank. In: Computational Linguistics #19, The MIT Press, Cambridge (1993)

    Google Scholar 

  7. Silberztein, M.: NooJ’s Manual can be downloaded from TU (2002), http://www.nooj4nlp.netUT

  8. Silberztein, M.: Dictionnaires électroniques et analyse automatique de textes. Masson. Paris (1993)

    Google Scholar 

  9. Silberztein, M.: Dictionnaires électroniques et comptage des mots. In: Proceedings of Troisièmes Journées d’Analyse des Données Textuelles (JADT). Rome (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zoubida Kedad Nadira Lammari Elisabeth Métais Farid Meziane Yacine Rezgui

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silberztein, M. (2007). An Alternative Approach to Tagging. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds) Natural Language Processing and Information Systems. NLDB 2007. Lecture Notes in Computer Science, vol 4592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73351-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73351-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73350-8

  • Online ISBN: 978-3-540-73351-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics