Skip to main content

Fuzzy C-Means Segmentation on Brain MR Slices Corrupted by RF-Inhomogeneity

  • Conference paper
Applications of Fuzzy Sets Theory (WILF 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4578))

Included in the following conference series:

Abstract

Brain MR Images corrupted by RF-Inhomogeneity exhibit brightness variations in such a way that a standard Fuzzy C-Means (fcm) segmentation algorithm fails. As a consequence, modified versions of the algorithm can be found in literature, which take into account the artifact. In this work we show that the application of a suitable pre-processing algorithm, already presented by the authors, followed by a standard fcm segmentation achieves good results also. The experimental results ones are compared with those obtained using SPM5, which can be considered the state of the art algorithm oriented to brain segmentation and bias removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ardizzone, E., Pirrone, R., Gambino, O.: Exponential Entropy Driven HUM on Knee MR Images. In: Proc. of IEEE XXVII Engineering in Medicine and Biology Conference - 4/7 September 2005, Shanghat,China (2005)

    Google Scholar 

  2. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Comput. J. 7, 308–313 (1965)

    MATH  Google Scholar 

  3. http://www.sph.sc.edu/comd/rorden/mricro.html

  4. Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  5. Smith, S.M.: Fast robust automated brain extraction. Human Brain Mapping 17(3), 143–155 (2002)

    Article  Google Scholar 

  6. Johnston, B., Atkins, M.S., Mackiewich, B., Member, Anderson, M.: Segmentation of Multide Sclerosis Lesions in Intensity Corrected Multispectral MRI. IEEE Transaction On Medical Imaging 15(2) (April 1996)

    Google Scholar 

  7. Ahmed, M.N, Yamany, S.M., Mohamed, N.: A Modified Fuzzy C-Means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Transactions on Medical Imaging 21, 193–199 (2002)

    Article  Google Scholar 

  8. Guillemaud, R.: Uniformity Correction with Homomorphic filtering on Region of Interest. In: IEEE International Conference on Image Processing. vol. 2, pp. 872–875 (1998)

    Google Scholar 

  9. Axel, L., Costantini, J., Listerud, J.: Intensity Correction in Surface Coil MR Imaging. American Journal on Roentgenology 148, 418–420 (1987)

    Google Scholar 

  10. Jiang, L., Yang, W.: A Modified Fuzzy C-Means Algorithm for Segmentation of Magnetic Resonance Images. In: Sun, C., Talbot, H., Ourselin, S., Editions, A.T. (eds.) Proc. VIIth Digital Image Computing: Techniques and Applications, pp. 225–231 (2003)

    Google Scholar 

  11. Brinkmann, B.H., Manduca, A., Robb, R.A.: Optimized Homomorphic Unsharp Masking for MR Greyscale Inhomogeneity Correction. IEEE Transactions on Medical Imaging. 17, 161–171 (1998)

    Article  Google Scholar 

  12. Likar, B., Viergever, M.A., Pernus, F.: Retrospective Correction of MR Intensity Inhomogeneity by Information Minimization. IEEE Transactions on Medical Imaging 20, 1398–1410 (2001)

    Article  Google Scholar 

  13. Pham, D.L., Prince, J.L.: Adaptive Fuzzy Segmentation of Magnetic Resonance Images. IEEE Transactions on Medical Imaging 18(9), 737–752 (1999)

    Article  Google Scholar 

  14. Pham, D.L., Prince, J.L.: An Adaptive Fuzzy C-Means Algorithm for Image Segmentation in the Presence of Intensity Inhomogeneities. Pattern Recognition Letters 20(1), 57–68 (1999)

    Article  MATH  Google Scholar 

  15. Kwan, R.K.S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging. 18(11), 1085–1097 (1999)

    Article  Google Scholar 

  16. Kwan, R.K.S., Evans, A.C., Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 135–140. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. http://www.fil.ion.ucl.ac.uk/spm/software/spm5/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Masulli Sushmita Mitra Gabriella Pasi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ardizzone, E., Pirrone, R., Gambino, O. (2007). Fuzzy C-Means Segmentation on Brain MR Slices Corrupted by RF-Inhomogeneity. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73400-0_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73399-7

  • Online ISBN: 978-3-540-73400-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics