Skip to main content

PCA Based Feature Selection Applied to the Analysis of the International Variation in Diet

  • Conference paper
Applications of Fuzzy Sets Theory (WILF 2007)

Abstract

In this work we describe a clustering and feature selection technique applied to the analysis of international dietary profiles. An asymmetric entropy-based measure for assessing the similarity between two clusterizations, also taking into account subclustering relationships, is at the core of the technique, together with PCA. Then, a feature analysis of the dataset with respect to its hierarchical clusterization is performed. This way, most significant features of the dataset are found and a deep understanding of the data distribution is made possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soussi, T., Beroud, C.: Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Human Mutation 21(3), 192–200 (2003)

    Article  Google Scholar 

  2. Pfeifer, G.P., Denissenko, M.F.: Formation and repair of DNA lesions in the p53 gene: Relation to cancer mutations? Environmental and Molecular Mutagenesis 31(3), 197–205 (1998)

    Article  Google Scholar 

  3. Olivier, Hussain, S.P., Caron de Fromentel, C., Hainaut, P., Harris, C.C.: TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 157, 247–270 (2004)

    Google Scholar 

  4. Jollife, I.T.: Principal Component Analysis. Springer-Verlag, New York (1986)

    Google Scholar 

  5. Statistics Toolbox, Matlab, The Mathworks, Inc.

    Google Scholar 

  6. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific Symposium on Biocomputing (2002)

    Google Scholar 

  7. Ciaramella, A., Longo, G., Staiano, A., Tagliaferri, R.: NEC: A Hierarchical Agglomerative Clustering Based on Fisher and Negentropy Information. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds.) WIRN 2005 and NAIS 2005. LNCS, vol. 3931, pp. 49–56. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Masulli Sushmita Mitra Gabriella Pasi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bishehsari, F. et al. (2007). PCA Based Feature Selection Applied to the Analysis of the International Variation in Diet. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73400-0_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73399-7

  • Online ISBN: 978-3-540-73400-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics