Skip to main content

In-Place Suffix Sorting

  • Conference paper
Automata, Languages and Programming (ICALP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Included in the following conference series:

Abstract

Given string T = T[1,...,n], the suffix sorting problem is to lexicographically sort the suffixes T[i,...,n] for all i. This problem is central to the construction of suffix arrays and trees with many applications in string processing, computational biology and compression. A bottleneck in these applications is the amount of workspace needed to perform suffix sorting beyond the space needed to store the input as well as the output. In particular, emphasis is even on the constant c in the O(n) = cn space algorithms known for this problem,

Currently the best previous result [5] takes time and extra space, for any \(v\in [1,\sqrt{n}]\) for strings from a general alphabet. We improve this and present the first known in-place suffix sorting algorithm. Our algorithm takes time using O(1) workspace and is optimal in the worst case for the general alphabet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Farach, M.: Optimal Suffix Tree Construction with Large Alphabets. In: FOCS 1997, pp. 137–143 (1997)

    Google Scholar 

  2. Ferragina, P., Manzini, G.: Engineering a lightweight suffix array construction algorithm. In: Proc. ESA (2002)

    Google Scholar 

  3. Gusfield, D.: Algorithms on strings, trees and sequences: Computer Science and Computational Biology. Cambridge Univ Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. Int. Colloquium on Automata, Languages and Programming 2719, 943–955 (2003)

    Article  Google Scholar 

  5. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. Journal of the ACM (in press)

    Google Scholar 

  6. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 200–210. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Ian Munro, J.: An implicit data structure supporting insertion, deletion, and search in O(log2 n) time. Journal of Computer and System Sciences 33(1), 66–74 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Salowe, J., Steiger, W.: Simplified stable merging tasks. Journal of Algorithms 8(4), 557–571 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franceschini, G., Muthukrishnan, S. (2007). In-Place Suffix Sorting. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics