Skip to main content

Holographic Algorithms: The Power of Dimensionality Resolved

  • Conference paper
Automata, Languages and Programming (ICALP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Included in the following conference series:

  • 1530 Accesses

Abstract

Valiant’s theory of holographic algorithms is a novel methodology to achieve exponential speed-ups in computation. A fundamental parameter in holographic algorithms is the dimension of the linear basis vectors. We completely resolve the problem of the power of higher dimensional bases. We prove that 2-dimensional bases are universal for holographic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cai, J-Y., Choudhary, V.: Some Results on Matchgates and Holographic Algorithms. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051(Part I), pp. 703–714. Springer, Heidelberg (2006) Also available at Electronic Colloquium on Computational Complexity TR06-048, 2006

    Chapter  Google Scholar 

  2. Cai, J-Y., Choudhary, V.: Valiant’s Holant Theorem and Matchgate Tensors (Extended Abstract). In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 248–261. Springer, Heidelberg (2006) Also available at Electronic Colloquium on Computational Complexity Report TR05-118

    Chapter  Google Scholar 

  3. Cai, J-Y., Choudhary, V., Lu, P.: On the Theory of Matchgate Computations. In: CCC 2007 (to appear)

    Google Scholar 

  4. Cai, J-Y., Lu, P.: On Symmetric Signatures in Holographic Algorithms. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 429–440. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Cai, J-Y., Lu, P.: Holographic Algorithms: From Art to Science. To appear in STOC 2007. Also available at Electronic Colloquium on Computational Complexity Report TR06-145

    Google Scholar 

  6. Cai, J-Y., Lu, P.: Bases Collapse in Holographic Algorithms. In: CCC 2007. Also available at Electronic Colloquium on Computational Complexity Report TR07-003 (to appear)

    Google Scholar 

  7. Cai, J-Y., Lu, P.: Holographic Algorithms: The Power of Dimensionality Resolved. Available at Electronic Colloquium on Computational Complexity Report TR07-020

    Google Scholar 

  8. Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics, 2nd edn., vol. 130. Springer, Heidelberg (1991)

    Google Scholar 

  9. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (2000)

    Article  MathSciNet  Google Scholar 

  10. Jerrum, M.: Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys. 48, 121–134 (1987) erratum. 59, 1087-1088 (1990)

    Article  MathSciNet  Google Scholar 

  11. Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)

    Article  Google Scholar 

  12. Kasteleyn, P.W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)

    Google Scholar 

  13. Knill, E.: Fermionic Linear Optics and Matchgates. At http://arxiv.org/abs/quant-ph/0108033

  14. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  15. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics – an exact result. Philosophical Magazine 6, 1061–1063 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  16. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM Journal of Computing 31(4), 1229–1254 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Valiant, L.G.: Expressiveness of Matchgates. Theoretical Computer Science 281(1), 457–471 (2002)

    Article  MathSciNet  Google Scholar 

  18. Valiant, L.G.: Holographic Algorithms (Extended Abstract). In: Proc. 45th IEEE Symposium on Foundations of Computer Science, pp. 306–315 (2004) A more detailed version appeared in Electronic Colloquium on Computational Complexity Report TR05-099

    Google Scholar 

  19. Valiant, L.G.: Holographic circuits. In: Proc. 32nd International Colloquium on Automata, Languages and Programming, pp. 1–15 (2005)

    Google Scholar 

  20. Valiant, L.G.: Completeness for parity problems. In: Proc. 11th International Computing and Combinatorics Conference, pp. 1–8 (2005)

    Google Scholar 

  21. Valiant, L.G.: Accidental Algorithms. In: Proc. 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 509–517 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, JY., Lu, P. (2007). Holographic Algorithms: The Power of Dimensionality Resolved. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics