Abstract
Valiant’s theory of holographic algorithms is a novel methodology to achieve exponential speed-ups in computation. A fundamental parameter in holographic algorithms is the dimension of the linear basis vectors. We completely resolve the problem of the power of higher dimensional bases. We prove that 2-dimensional bases are universal for holographic algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cai, J-Y., Choudhary, V.: Some Results on Matchgates and Holographic Algorithms. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051(Part I), pp. 703–714. Springer, Heidelberg (2006) Also available at Electronic Colloquium on Computational Complexity TR06-048, 2006
Cai, J-Y., Choudhary, V.: Valiant’s Holant Theorem and Matchgate Tensors (Extended Abstract). In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 248–261. Springer, Heidelberg (2006) Also available at Electronic Colloquium on Computational Complexity Report TR05-118
Cai, J-Y., Choudhary, V., Lu, P.: On the Theory of Matchgate Computations. In: CCC 2007 (to appear)
Cai, J-Y., Lu, P.: On Symmetric Signatures in Holographic Algorithms. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 429–440. Springer, Heidelberg (2007)
Cai, J-Y., Lu, P.: Holographic Algorithms: From Art to Science. To appear in STOC 2007. Also available at Electronic Colloquium on Computational Complexity Report TR06-145
Cai, J-Y., Lu, P.: Bases Collapse in Holographic Algorithms. In: CCC 2007. Also available at Electronic Colloquium on Computational Complexity Report TR07-003 (to appear)
Cai, J-Y., Lu, P.: Holographic Algorithms: The Power of Dimensionality Resolved. Available at Electronic Colloquium on Computational Complexity Report TR07-020
Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics, 2nd edn., vol. 130. Springer, Heidelberg (1991)
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (2000)
Jerrum, M.: Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys. 48, 121–134 (1987) erratum. 59, 1087-1088 (1990)
Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)
Kasteleyn, P.W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)
Knill, E.: Fermionic Linear Optics and Matchgates. At http://arxiv.org/abs/quant-ph/0108033
Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Heidelberg (2000)
Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics – an exact result. Philosophical Magazine 6, 1061–1063 (1961)
Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM Journal of Computing 31(4), 1229–1254 (2002)
Valiant, L.G.: Expressiveness of Matchgates. Theoretical Computer Science 281(1), 457–471 (2002)
Valiant, L.G.: Holographic Algorithms (Extended Abstract). In: Proc. 45th IEEE Symposium on Foundations of Computer Science, pp. 306–315 (2004) A more detailed version appeared in Electronic Colloquium on Computational Complexity Report TR05-099
Valiant, L.G.: Holographic circuits. In: Proc. 32nd International Colloquium on Automata, Languages and Programming, pp. 1–15 (2005)
Valiant, L.G.: Completeness for parity problems. In: Proc. 11th International Computing and Combinatorics Conference, pp. 1–8 (2005)
Valiant, L.G.: Accidental Algorithms. In: Proc. 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 509–517 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cai, JY., Lu, P. (2007). Holographic Algorithms: The Power of Dimensionality Resolved. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-73420-8_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73419-2
Online ISBN: 978-3-540-73420-8
eBook Packages: Computer ScienceComputer Science (R0)