Skip to main content

Translating Time-Course Gene Expression Profiles into Semi-algebraic Hybrid Automata Via Dimensionality Reduction

  • Conference paper
Algebraic Biology (AB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4545))

Included in the following conference series:

  • 643 Accesses

Abstract

Biotechnological innovations which sample gene expressions allow to measure the gene expression levels of a biological system with varying degree of accuracy, cost and speed. By repeating the measurement steps at different sampling rates, one can both infer relations among the genes and define a dynamic model of the underlying biological system. When a very large number of genes and measurements are involved, they raise several difficult algorithmic questions, as accurate model-building, checking and inference tasks. Semi-algebraic hybrid automata were proposed as a modeling formalism for biological systems (see, e.g., [17,6]), and demonstrated their abilities to handle complex biochemical pathways. This paper proposes an automatic procedure to build semi-algebraic hybrid automata from gene-expression profiles. In order to reduce the size of the resulting automata and to minimize their analysis computational complexity, our approach exploits various dimensionality reduction techniques. The paper concludes with several experimental results about peach fruit.

This work is developed within the framework of the HYCON Network of Excellence, contract number FP6-IST-511368 and partially supported by the projects PRIN 2005 2005015491 and PRIN 2004 2004079422_004 (Role of sugar signalling in peach fruit quality development) and by the regional project BioCheck. B.M. has been supported by funding from two NSF ITR grants and one NSF EMT grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Richel, H. (eds.) Hybrid Systems. LNCS, pp. 209–229. Springer, Heidelberg (1992)

    Google Scholar 

  2. Anai, H.: Algebraic Approach to Analysis of Discrete-Time Polynomial Systems. In: European Control Conference (ECC 1999) (1999)

    Google Scholar 

  3. Bar-Joseph, Z., Gerber, G., Gifford, D.K., Jaakkola, T.S., Simon, I.: A New Approach to Analyzing Gene Expression Time Series Data. In: RECOMB 2002. Proc. of Int. Conference on Computational biology, pp. 39–48. ACM Press, New York (2002)

    Chapter  Google Scholar 

  4. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)

    Article  Google Scholar 

  5. Bustin, S.A.: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Mol. Endoc. 25, 169–193 (2000)

    Article  Google Scholar 

  6. Casagrande, A., Mysore, V., Piazza, C., Mishra, B.: Independent dynamics hybrid automata in systems biology. In: Proc. of the First International Conference on Algebraic Biology (AB 2005), pp. 61–73. Universal Academy Press, Inc. (2005)

    Google Scholar 

  7. Casagrande, A., Piazza, C., Mishra, B.: Semi-Algebraic Constant Reset Hybrid Automata - SACoRe. In: CDC 2005. Proc. of Conference on Decision and Control, pp. 678–683. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York, NY, USA (1991)

    MATH  Google Scholar 

  9. Datta, S., Datta, S.: Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19(4), 459–466 (2003)

    Article  Google Scholar 

  10. Gachon, C., Mingam, A., Charrier, B.: Real-time PCR: what relevance to plant studies?. Journal of Experimental Botany 55(402), 1445–1454 (2004)

    Article  Google Scholar 

  11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  12. Jekins, R., Pennington, S.: Arrays for protein expression profiling: towards a viable alternative to two-dimensional gel electrophoresis?. Prot. 1(1), 13–29 (2001)

    Google Scholar 

  13. Jolliffe, I.T.: Principal component analysis. Series in statistics. Springer, Heidelberg (1986)

    Google Scholar 

  14. Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., Sjöback, R., Sjögreen, B., Strömbom, L., Ståhlberg, A., Zoric, N.: The real-time polymerase chain reaction. Mol. Aspects of Medicine 27, 95–125 (2006)

    Article  Google Scholar 

  15. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal Hybrid Systems. Mathematics of Control, Signals, and Systems 13, 1–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. on Comp. Biology and Bioinformatics 1, 24–45 (2004)

    Article  Google Scholar 

  17. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking i: The case of biochemical systems and their reachability analysis. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)

    Google Scholar 

  18. Schena, M., Shalon, D., Davis, R.W.: Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science 270(5235), 467–470 (1995)

    Article  Google Scholar 

  19. Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Technical Journal 27, 379–423 (1948)

    MathSciNet  Google Scholar 

  20. Slonim, N., Atwal, G.S., Tkacik, G., Bialek, W.: Information-based clustering. In: Proc Natl Acad Sci USA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hirokazu Anai Katsuhisa Horimoto Temur Kutsia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casagrande, A. et al. (2007). Translating Time-Course Gene Expression Profiles into Semi-algebraic Hybrid Automata Via Dimensionality Reduction. In: Anai, H., Horimoto, K., Kutsia, T. (eds) Algebraic Biology. AB 2007. Lecture Notes in Computer Science, vol 4545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73433-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73433-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73432-1

  • Online ISBN: 978-3-540-73433-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics