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Abstract. Model-checking regular properties is well established and a
powerful verification technique for regular as well as context-free program
behaviours. Recently, through the use of ω-visibly pushdown languages
(ωVPLs), defined by ω-visibly pushdown automata, model-checking of
properties beyond regular expressiveness was made possible and shown
to be still decidable even when the program’s model of behaviour is an
ωVPL. In this paper, we give a grammatical representation of ωVPLs
and the corresponding finite word languages – VPL. From a specifica-
tion viewpoint, the grammatical representation provides a more natural
representation than the automata approach.

1 Introduction

In [AM04], ω-visibly pushdown languages over infinite words (ωVPLs) were in-
troduced as a specialisation of ω-context-free languages (ωCFLs), i.e. they are
strictly included in the ωCFLs but more expressive than ω-regular languages
(ωRLs). The paper showed that the language inclusion problem is decidable for
ωVPLs, and thus, the related model-checking problem is decidable as well. This
work was presented in the context of (ω)VPLs1 being represented as automata
and a monadic second-order logic with matching relation.

In this paper, we define a grammatical representation of (ω)VPLs. We also
propose that grammars allow us to write more natural specifications than (ω)-
visibly pushdown automata ((ω)VPA). Section 2 introduces the formalisms used
in this paper. In Section 3 our grammatical representation is presented. Finally,
Section 4 concludes our work.

2 Preliminaries

For an arbitrary set X , we write 2X to denote its power-set. Let Σ denote a
finite alphabet over letters a, b, c, . . ., the set of finite (infinite) words over Σ is
denoted by Σ∗ (Σω). We use ε to denote the empty word. For an arbitrary word
w ∈ Σ∗ we will write |w| to denote its length. For the empty word ε, we set

1 Our bracketing of ω abbreviates restating the sentence without the bracketed con-
tents.
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|ε| = 0. The concatenation of two words w and w′ is denoted by w · w′. The
length of an infinite word equals the first infinite ordinal ω. Positions in a word
w are addressed by natural numbers, where the first index starts at 1. The i-th
letter of a word is referred to as w(i). We use a sans-serif font for meta-variables
and a (meta)-variable’s context is only explicitly stated once.

2.1 Visibly Pushdown Languages

(ω)VPLs are defined over a terminal alphabet of three pairwise disjoint sets
Σc, Σi and Σr, which we will use as properties in specifications to denote calls,
internal actions and returns respectively. Any call may be matched with a subse-
quent return, while internal actions must not be matched at all. A formalisation
of (ω)VPLs has been given in terms of automata as well as in terms of logic.

Visibly Pushdown Automata. For (ω)VPA, the current input letter deter-
mines the actions the automaton can perform.

Definition 1. A visibly pushdown automaton over finite words (VPA) (visibly
pushdown automaton over infinite words (ωVPA)) is a sextuple A = (Q,Σc ∪
Σi ∪Σr, Γ, δ,Q

′, F ), where Q is a finite set of states {p, q, q0, q1, . . .}, Σc, Σi, Σr

are finite sets of terminals representing calls c, c0, c1, . . . , ck, internal actions
i, i0, i1, . . . , il, and returns r, r0, r1, . . . , rm respectively, Γ is a finite set of stack
symbols A,B,C, . . ., including the stack bottom marker ⊥, δ is a finite set of
transition rules between states p, q ∈ Q for inputs c ∈ Σc, i ∈ Σi, or r ∈ Σr and
stack contents A,B ∈ (Γ \ {⊥}) of the form p

c,κ/Bκ−−−−→ q for all κ ∈ Γ , p
i,κ/κ−−−−→ q

for all κ ∈ Γ , p
r,⊥/⊥−−−−→ q, or p

r,A/ε−−−−→ q, Q′ ⊆ Q denotes a non-empty set of
designated initial states, F ⊆ Q is the set of final states.

When reading a word w, instantaneous descriptions (q, w, α) are used to describe
the current state, the current stack contents and a postfix of w that still has to be
processed. The binary move relation �A determines possible moves an (ω)VPA
A can make. Whenever A in �A is understood from the context, we write �. In
the following we use � ∗ (�ω) in order to denote a finitely (infinitely) repeated
application of � (up to the first infinite ordinal). In conjunction with �ω, we
use Qinf to denote the set of states that appear infinitely often in the resulting
sequence.

Definition 2. The language L(A) of a (ω)VPA A = (Q,Σc∪Σi∪Σr, Γ, δ,Q
′, F )

is the set of finite (infinite) words that are derivable from any initial state in
Q′, i.e. L(A) = {w | (p, w,⊥) � ∗ (q, ε, γ) and p ∈ Q′ and q ∈ F} (L(A) =
{w | (p, w,⊥) �ω (q, ε, γ) and p ∈ Q′ and Qinf ∩ F 	= ∅}).

In an arbitrary word of the ωVPLs, calls and returns can appear either matched
or unmatched. A call automatically matches the next following return, which is
not matched by a succeeding call. A call is said to be unmatched, when there
are less or equally many returns than calls following it. Unmatched calls cannot
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be followed by unmatched returns, but unmatched returns may be followed by
unmatched calls.

A word w of the form cαr is called minimally well-matched, iff c and r are a
matching and α contains no unmatched calls or returns. The set of all minimally
well-matched words is denoted by Lmwm ([LMS04], p. 412, par. 8). In conjunction
with a given ωVPA A, a summary-edge is a triple (p, q, f), f ∈ {0, 1}, which
abstracts minimally well-matched words that are recognised by A when going
from p to q, where on the corresponding run a final state has to be visited (f = 1)
or not (f = 0). The set of words represented by a summary edge is denoted by
L((p, q, f)).

Definition 3. A pseudo-run of an ωVPA A = (Q,Σc ∪ Σi ∪ Σr, Γ, δ,Q
′, F )

is an infinite word w = α1α2α3 . . . with αi ∈ (Σc ∪ Σi ∪ Σr ∪ ⋃m
n=1{Ωn}),

each Ωn denotes a non-empty set of summary-edges of the form (p, q, f) with
f ∈ {0, 1}, in case αi = c, then there is no αj = r for i < j, and there is a word
w′ = β1β2β3 . . ., w′ ∈ L(A), so that either αi = βi, or αi = Ωk and βi is a
minimally well-matched word that is generated due to A moving from state p to
q and (p, q, f) ∈ Ωk. In case f = 1 (f = 0), then a final state is (not) on the path
from p to q.

According to [AM04], p. 210, par. 6, a non-deterministic Büchi-automaton can
be constructed that accepts all pseudo-runs of an arbitrary given ωVPA. For
every pseudo-run that is represented by the Büchi-automaton, there exists a
corresponding accepting run of the original ωVPA.

Monadic Second-Order Logic with Matched Calls/Returns. A logical
representation, (ω)MSOμ, of (ω)VPLs was given as an extension of monadic
second-order logic (MSO) with a matching relation μ, which matches calls and
returns, where the call always has to appear first.

Definition 4. A formula ϕ is a formula of monadic second-order logic of one
successor with call/return matching relation ((ω)MSOμ) over an alphabet Σc ∪
Σi ∪ Σr, iff it is of the form ϕ ≡ �, ϕ ≡ Ta(i), a ∈ Σ, ϕ ≡ i ∈ X, ϕ ≡ i ≤ j,
ϕ ≡ μ(i, j), ϕ ≡ S(i, j), ϕ ≡ ¬ψ, ϕ ≡ ψ1∨ψ2, ϕ ≡ ∃i ψ(i), or ϕ ≡ ∃Xψ(X), where
ψ, ψ1, and ψ2 are (ω)MSOμ formula as well, V and W are sets of first-order
and second-order variables respectively, and i, j ∈ V , X ∈W .

We use the standard abbreviations for the truth constant, conjunction and uni-
versal quantification. Also, ∀x(y ≤ x ≤ z ⇒ ϕ) is shortened to ∀x∈[y, z]ϕ. In
order to simplify arithmetic in conjunction with the successor function, we will
omit the successor function completely in the following and write i + 1 instead
of j for which S(i, j) holds. Second-order quantifications ∃X1∃X2 . . . ∃Xk are ab-
breviated in vector notation as ∃X.

We assume the usual semantics for (ω)MSOμ formulae, where μ(i, j) is true
when w(i) = c and w(j) = r are a matching call/return pair.

Definition 5. The language L(ϕ) of an (ω)MSOμ formula ϕ is the set of finite
(infinite) words w for which there is a corresponding model of ϕ.
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2.2 Context-Free Grammars

Definition 6. An (ω)-context-free grammar ((ω)CFG) G over finite words (in-
finite words) is a quadruple (V,Σ, P, S) (quintuple (V,Σ, P, S, F )), where V is
a finite set of non-terminals A,B, . . ., Σ is a finite set of terminals a, b, . . ., V
and Σ are disjoint, P is a finite set of productions of the form V × (V ∪ Σ)∗,
and S denotes a designated starting non-terminal S ∈ V (and F ⊆ V denotes
the set of accepting non-terminals).

We will use the notation A→G α for a production (A, α) in G. If G is understood
from the context, we write A → α. We also use →G to denote the derivation
relation of G, that determines derivations of sentential forms of G. Again, we
drop the sub-script when G is understood from the context. In the following we
write ∗→ in order to denote a finitely repeated application of → while ω→ denotes
an infinite application of →. Similarly to the previously used set Qinf , we use
Vinf in connection with ω→ in order to denote the set of non-terminals that are
infinitely often replaced among the sentential forms.

Definition 7. The language L(G) of an (ω)CFG G = (V,Σ, P, S) (G = (V,Σ,
P, S, F )) is the set of finite (infinite) words over Σ that are derivable from the
initial symbol, i.e. L(G) = {w | S ∗→ w and w ∈ Σ∗} (L(G) = {w | S ω→ w,w ∈
Σω and Vinf ∩ F 	= ∅}).

2.3 Balanced Grammars

Balanced grammars are a specialisation of context-free grammars over finite
words [BB02]. Unlike the previous definition of CFGs, balanced grammars are
permitted to have an infinite set of productions. This is due to regular expressions
over terminals and/or non-terminals in right-hand sides of productions.

Definition 8. A balanced grammar (BG) G over finite words is a quadruple
(V,Σ ∪ Σ ∪ Σ,P , S) is a specialisation of a context-free grammar, where Σ
and Σ are finite sets of terminals a1, a2, . . . , ak and co-terminals a1, a2, . . . , ak

respectively, where each terminal ai is associated with its unique counterpart,
ai, its co-terminal, and vice versa, Σ is a finite set of intermediate terminals
a, b, . . ., the sets Σ, Σ, and Σ are mutually disjoint, P is a finite or infinite set
of productions of the form V × a(V ∪Σ)∗a, and S denotes a designated starting
non-terminal S ∈ V .

As already pointed out in [BB02], an infinite set of productions does not raise
the grammars’ expressiveness, but provides a succinct notation. The derivation
relation of context-free grammars is still applicable to balanced grammars.

Definition 9. The language L(G) of a BG G = (V,Σ ∪ Σ ∪ Σ,P , S) is the
set of words that are derivable from the initial symbol, i.e. L(G) = {w | S ∗→
w and w ∈ (Σ ∪Σ ∪Σ)∗}.
In the following, we are writing R to denote an arbitrary regular expression over
V ∪Σ.
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3 Grammars for Visibly Pushdown Languages

A grammatical representation of (ω)VPLs is presented, where we take a compo-
sitional approach that builds on pseudo-runs and minimally well-matched words.
We first state our grammatical representation and then decompose it into two
types of grammars. We show their resemblance of pseudo-runs and minimally
well-matched words, similar to the approach for (ω)VPAs.

3.1 Quasi Balanced Grammars

In order to simplify our proofs, we give an alternative – but expressively equiva-
lent – definition of BGs, where only a finite number of productions is admitted.
We reformulate occurrences of regular expressions R in terms of production rules
PR and substitute each R by an initial non-terminal SR that appears on a left-
hand side in PR. Therefore, matchings aRa become aSRa, where the derivation
of SR resembles L(R).

Definition 10. Let G = (V,Σ ∪Σ ∪Σ,P , S) denote an arbitrary BG, a quasi
balanced grammar (qBG) G′ = (V ′, Σ ∪Σ ∪Σ,P, S) generalises G by having a
finite set of productions, where productions are either

a) in double Greibach normal form A → aSRa, or
b) of form A → BC, A → aC, or A → ε, where B’s productions are of the form

according to a) and C’s productions are of the form according to b).

Lemma 1. For every BG G = (V,Σ∪Σ∪Σ,P , S) there is a qBG G′ = (V ′, Σ∪
Σ ∪Σ,P, S), such that L(G) = L(G′).

3.2 A Grammatical Representation of ωVPLs

Matchings in an ωVPL appear only as finite sub-words in the language, which
was utilised in the characterisation of pseudo-runs. Summary-edges reflect sub-
words of exactly this form, which are in Lmwm. Given an infinite word w, it
can be split into sub-words that are either in Lmwm or in Σc ∪ Σi ∪ Σr, where
no sub-word in Σr follows a sub-word in Σc. We abbreviate the latter con-
straint as Σc/Σr-matching avoiding. Our grammatical representation of ωVPLs
utilises Σc/Σr-matching avoiding ωRGs to describe languages of pseudo-runs.
Languages of summary-edges, i.e. languages with words in Lmwm, are separately
described by qBGs under a special homomorphism. The homomorphism is re-
quired to cover matchings of calls c that can match more than one return r,
which cannot be reflected as a simple terminal/co-terminal matching a/a. For
example, the matchings c/r1 and c/r2 are representable as terminal/co-terminal
pairs a/a and b/b under the mappings h(a) = h(b) = c, h(a) = r1 and h(b) = r2.
Finally, the amalgamation of Σc/Σr-matching avoiding ωRGs and qBGs un-
der the aforementioned homomorphism give us a grammatical representation of
ωVPLs:
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Definition 11. A superficial2 ω-regular grammar with injected balanced gram-
mars (ωRG(qBG)+h) G = (V,Σc ∪Σi ∪Σr ∪

⋃m
n=1{gn}, P, S, F,

⋃m
n=1{Gn}, h),

where

– Σc, Σi, Σr and
⋃m

n=1{gn} are mutually disjoint,
– G is Σc/Σr-matching avoiding,
– Gn = (Vn, Σn, Pn, Sn) is a qBG for n = 1, 2, . . . ,m,3

is an ωCFG G′ = (V ∪ ⋃m
n=1{Vn}, Σ ∪ ⋃m

n=1{Σn}, P ′, S, F ) with

– disjoint sets V and {V1, V2, . . . , Vm} as well as Σ and {Σ1, Σ2, . . . , Σm}, and
– P ′ is the smallest set satisfying

• A →G′ aB if A →G aB, where a ∈ (Σc ∪Σi ∪Σr), or
• A →G′ SnB if A →G gnB, or
• A →G′ α if A →Gn α,

and h is constrained so that it preserves terminals of the injector grammar,
h(a) = a for any a ∈ (Σc ∪Σi ∪Σr), and for terminals/co-terminals of injected
grammars it maps terminals a ∈ Σn to calls c ∈ Σc, maps co-terminals a ∈ Σn

to returns r ∈ Σr, maps terminals a ∈ Σn to internal actions i ∈ Σi.

In the following, we refer to the homomorphism h under the constraints which
are given above as superficial mapping h.

Definition 12. The language L(G) of an ωRG(qBG)+h G = (V,Σc ∪ Σi ∪
Σr ∪

⋃m
n=1{gn}, P, S, F,

⋃m
n=1{Gn}, h) denotes the set {h(w) | S ω→G′ w and w ∈

(Σ∪Σ1∪Σ2∪. . .∪Σm)ω}, where G′ is the ω-context-free grammar corresponding
to G.

Consider an arbitrary ωRG(qBG)+h G = (V,Σc ∪Σi ∪Σr ∪
⋃m

n=1{gn}, P,
S, F,

⋃m
n=1{Gn}, h). We call the ωRG G↑ = (V,Σc∪Σi∪Σr∪

⋃m
n=1{gn}, P, S, F )

the injector grammar of G, while the qBGs G1, G2, . . .Gm are called injected
grammars of G.4 When G is clear from the context, we just talk about the in-
jector grammar G↑ and the injected grammars G1, . . . , Gm respectively. The
languages associated with these grammars are referred to as injector and in-
jected languages respectively. In fact, injector languages resemble pseudo-runs
with pseudo edges gn, n = 1 . . .m, while injected language resemble matchings
covered by summary-edges.

3.3 ωVPL and ωRL(qBL)+h Coincide

For the equivalence proof of ωVPLs and ωRL(qBL)+hs, we first show that mini-
mally well-matched words, as described by summary-edges, can be expressed by

2 Superficial – as understood as being on the surface of something.
3 Each Σn is a shorthand for Σn ∪ Σn ∪ Σn.
4 This should not be confused with nested words, [AM06], which describe the structure

induced by matchings in finite words.
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qBGs plus an appropriate superficial mapping, and vice versa. It is then straight-
forward to prove language equivalence, by translating an arbitraryωRG(qBG)+h
into an expressively equivalent ωMSO formula and an arbitrary ωVPA into an
expressively equivalent ωRG(qBG)+h.

Let VPAmwm and MSOmwm refer to VPA and MSO-formulae whose languages
are subsets of Lmwm respectively, i.e. restricted variants of VPA and MSO-
formulae that only accept minimally well-matched words. We show that any
qBG can be translated into an equivalent MSOmwm formula. Since MSOmwm

defines Lmwm, the inclusion qBL ⊆ Lmwm is proven. Second, for an arbitrary
VPAmwm a qBG is constructed so that their languages coincide, which gives us
qBL ⊇ VPLmwm.

In the following lemma, an MSOmwm formula is constructed from a qBG in
such a way so that their languages coincide. The translation works by quantifying
over each matching in the word and filling in the respective regular expressions.
In order for the lemma to hold, we assume that all of the qBG’s productions
are uniquely identified by their terminal/co-terminal pairs. While this clearly
restricts a grammar’s language in general, the language under a superficial map-
ping is preserved.

Lemma 2. Let G = (V,Σ ∪Σ ∪Σ,P, S) denote an arbitrary qBG and let h be
an arbitrary superficial mapping. Then the MSOmwm formula

ϕ ≡ ∃X∃i
∨

(S→aSRa)∈P

(Ψa,a(1, i) ∧ T$(i+ 1) ∧ ∀k ∈ [1, i]Φ(k))

accepts the same language as G, where

Ψa,a(i, j) ≡ Ta(i) ∧ Ta(j) ∧ μ(i, j),

Φ(k) ≡
∨

a∈Σ

Ta(k) ⇒ ∃j(μ(k, j) ∧ ϕa(k + 1, j)),

Δ(s, t, k) ≡ ∨
(A→aB)∈PR(XA(k) ∧XB(k + 1) ∧ Ta(k)) ∨

∨
(A → BC, B → bSR′b )∈PR ∃j ∈ [s, t](XA(k) ∧XC(j + 1) ∧ Ψb,b(k, j))

ϕa(s, t) ≡ XSR(s) ∧ ∧
(A, B) ∈ V, A 	= B ∀k ¬(XA(k) ∧XB(k)) ∧

∀k ∈ [s, t − 1]ϕμ(s, t, k) ⇒ Δ(s, t, k) ∧ ∨
(A→ε)∈PR XA(t),

where (A → aSRa) ∈ P , and ϕμ(s, t, k) ≡ ¬∃i, j ∈ [s, t](μ(i, j) ∧ i < k ≤ j).

Proof. Consider an arbitrary qBG+h G and its translation to a MSOmwm for-
mula ϕ. We show that every word w$ ∈ L(ϕ) is a word w ∈ L(G) and vice
versa.
L(ϕ) ⊆ L(G): Let M be an arbitrary model of ϕ that represents the word w.

We write 〈T1, X1〉〈T2, X2〉 . . . 〈T|w|, X|w|〉〈T$, X|w|+1〉 to denote the sequence of
unique predicate pairs of T and X which hold at indices 1 to |w| + 1 in M.

Occurrences of the form 〈Ta, XB〉 are replaced by 〈Ta,B〉 if (B → ε) ∈ P ,
occurrences of the form 〈Ta, XA〉〈Ta,B〉 are replaced by 〈Ta,A〉 if (A → aB) ∈ P ,
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and occurrences of the form 〈Ta, XB〉〈Ta, SR〉〈Tb,C〉 are replaced with 〈Tb,A〉 if
(A → BC,B → aSRa) ∈ P . Eventually, 〈Ta, XS〉〈Ta, SR〉 will be left, which is
replaced with S iff (S → aSRa) ∈ P . As a result, we have established a bottom
up parse in G for an arbitrary word w$ ∈ L(ϕ), which implies that every word
in L(ϕ) is in L(G).
L(G) ⊆ L(ϕ): Let S → α → β → . . . → w denote an arbitrary derivation

in G. With each derivation step, we try to find variable assignments that sat-
isfy ϕ, so that after the derivation finishes, w$ is represented by the sequence
〈T1, X1〉〈T2, X2〉 . . . 〈T$, X|w|+1〉 of ϕ. The construction of 〈T1, X1〉〈T2, X2〉 . . .
〈T$, X|w|+1〉 follows the derivation S → α → β → . . . → w in the sense that
there is a mapping between the n-th step of the sequence constructed by the
variable assignments and the n-th sentential form reached in the derivation.

We consider triples of the form �A, ψ,B�, where A is a non-terminal as it
appears in some sentential form derived from S, ψ denotes the formula which is
supposed to derive a word w, where A ∗→ w, and B is a temporary stored non-
terminal. When A derives α with A→ α, we try to find variable assignments for
ψ that represent terminals in α. Since terminals appear only in prefixes/postfixes
of α, we remove the ground terms in ψ, add pairs 〈Tk, Xk〉 to the left/right
of �A, ψ,B� accordingly, and replace �A, ψ,B� with �C, ψ′,E� or the sequence
�C, ψ′,E��D, ψ′′,F�, depending if α has one non-terminal C or two non-terminals
CD as sub-word. The non-terminals E and F are associated with productions
E → ε and F → ε respectively, where they denote the end of a regular expression
embedded between a call and return.

Starting the rewriting process with �S, ϕ,A�, A is chosen arbitrarily, a sequence
of tuples of the form 〈Tk, Xk〉 is eventually left, which indeed represents w, so
that the model for w$ is represented by adding 〈T$, XA〉 to the sequence. ��
The reverse inclusion, i.e. qBL ⊇ VPL, can be shown by a number of rewriting
steps of an arbitrary VPAmwm to a BG equipped with a superficial mapping.
Since there is a translation from BGs to qBGs, the inclusion is then proven. The
VPAmwm represents hereby L((p, q, f)) of some summary-edge (p, q, f).

Definition 13. Let G = (V,Σc∪Σi∪Σr, P, S) denote the CFG with productions
of the form S → cA, A → cBC, A → iB, and A → r that is obtained from a
VPAmwm by the standard translation [HMU01, Theorem 6.14, incl. its proof],
then the immediate matching CFG G′ = (V ′, Σc ∪ Σi ∪ Σr, P

′, S′) is obtained
from G, so that S′ →G′ c〈A, r〉r iff S →G cA, 〈A, r1〉 →G′ c〈B, r2〉r2〈C, r1〉 iff
A →G cBC, 〈A, r〉 →G′ i〈B, r〉 iff A →G iB, 〈A, r〉 →G′ ε iff A →G r.

Lemma 3. The language L(G) of an immediate matching CFG G that is ob-
tained from a VPAmwm A is equal to L(A).

Proof (Lemma 3). The translation of Definition 13 is preserving the language
equivalence of the grammars, as it is a special case of the more general translation
presented in [[Eng92, Page 292]. ��
In the following transformation steps, productions are rewritten so that match-
ings cAr appear exclusively in right-hand sides. Furthermore, we remove all pro-
ductions that produce no matchings by introducing language preserving regular
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expressions R in productions with right-hand sides of the form cAr, so that the
resulting right-hand side is cRr. Finally, adding a homomorphism that maps
fresh terminal/co-terminal pairs to calls and returns, where the productions are
modified accordingly, gives us a BG.

Definition 14. Let G = (V,Σc ∪Σi ∪Σr, P, S) denote an immediate matching
CFG, a BG G′′′ = (V ′′′, Σ ∪ Σ ∪ Σ,P ′′′, S′′′) and superficial mapping h are
obtained from G in three steps as follows:
First step: A →G′ cBr iff A →G cBr, A →G′ A′C,A′ → cBr iff A →G cBrC,
A →G′ iB iff A →G iB, A →G′ ε iff A →G ε.
Second step: A →G′′ cRBr iff A →G′ cBr, where RB describes the language L(B)
over Σi ∪ Vcαr, Vcαr = {A | A→G′ cBr}.
Third step: A →G′′′ aRBa, h(a) = c, h(a) = r iff A →G′′ cRBr.

Lemma 4. For any immediate matching CFG G and its corresponding BG G′

plus superficial mapping h as of Definition 14, their languages coincide.

Proof. In the first step, we only split up some productions into two separate
productions A → A′C and A′ → cBr, which preserves language equivalence.
In the second step, every non-terminal B in right-hand sides of the form cBr is
substituted with it regular language over Σi∪V . This is clearly just a syntactical
abbreviation, and hence, does not modify the language either. Finally, in the
third step, every call is replaced by a terminal and every return is replaced by a
co-terminal, with an appropriate h respectively. ��

Equivalence of ωRL(qBL) and ωVPL is now shown by translating an arbitrary
ωRG(qBG) into an ωMSOμ formula and an arbitrary ωVPA into an ωRG(qBG),
where each time the languages of the characterisations coincide.

Theorem 1. The language classes ωRL(qBL)+h and ωVPL coincide.

Proof. ωRL(qBL)+h ⊆ ωVPL: Let G = (V,Σc ∪Σi ∪Σr ∪
⋃m

n=1{gn}, P, S, F,⋃m
n=1{Gn}, h) denote an arbitrary ωRG(qBG)+h. Its injector language is regu-

lar, and hence, is representable as an ωMSO formula by the standard translation.
Each of the injected languages L(Gn) is representable as MSOmwm formula

ϕn respectively. Let ϕ′
n denote a variation of ϕn, where the formula presented

in Lemma 2 is modified to (∃X
∨

(S→aSRa)∈P (Ψa,a(i, j)∧ ∀k ∈ [i, j]Φ(k)))(i, j) but
left unchanged otherwise. With appropriate renaming of variables, each terminal
gn can then be substituted by the corresponding formula ϕ′

n in the injector
grammar, so that we get an ωMSO formula

ϕ ≡ XS(1) ∧ ∀k
(∨

(A→aB)∈P (XA(k) ∧XB(k + 1) ∧ Ta(k)) ∨
∨

(A→gnB)∈P ∃j(XA(k) ∧XB(j + 1) ∧ ϕ′
n(k, j))

)

∧
∨

A∈F ∀k∃j(k < j ∧XA(j)).

Language inclusion follows from the fact that every ωMSOμ formula can be
translated into an ωVPA.
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ωRL(qBL)+h ⊇ ωVPL: Consider an ωVPA A and let A′ = (Q′, Σc ∪Σi ∪Σr ∪⋃m
n=1{Ωn}, δ, qi, F ′) denote the Büchi-automaton accepting all pseudo-runs ofA.

A′ can be represented as right-linear injector grammar G↑ with productions of
the form A → cB, A → rB, and A → (p, q, f)n′B for representing sets of summary-
edges Ωn with (p, q, f)n′ ∈ Ωn. Since summary-edges (p, q, f)n′ are treated as
terminals in A′, their f component does not contribute to the acceptance of a
pseudo-run. Hence, for every production A → (p, q, 1)n′B, it is w.l.o.g. required
that B ∈ F ′.

All summary-edges stand for languages in VPLmwm, and hence, are repre-
sentable as VPAmwms respectively. Each VPAmwm representing a summary-edge
(p, q, f)n′ can be transformed into a qBG Gn′ plus additional superficial mapping
h. By combining G↑ and the various Gn′ to a superficial ωRG(qBG), we get the
language inclusion. ��
The use of qBGs is counter-productive. BGs are more accessible as well as suc-
cinct due to the use of regular expressions in their productions. Injecting BGs
instead of qBGs into ωRGs does not change the expressiveness, which is trivially
true as every BG can be translated into a qBG.

Corollary 1. The language classes (ω)RL(BL)+h and (ω)VPL coincide.

4 Conclusion

In this paper, a grammatical representation of (ω)VPLs was given. We intro-
duced an amalgamation of ωRGs and qBGs equipped with a specific homomor-
phisms and showed that the resulting language class defined by the new grammar
coincides with the ωVPLs.

Our grammatical approach towards (ω)VPLs provides a more natural repre-
sentation of language specifications. As a small example, consider the following.
Figure1(a) on the next page shows the code for traversing infinitely many finite
binary trees. Let c denote a call to traverse(...) and let r denote the return
in traverse(...), then the ωVPA in Figure1(b) and the ωRG(BG)+h in Fig-
ure1(c) represent all possible traces that can be generated by main, i.e. they
are behavioural specifications of the code. It is apparent that the ωRG(BG)+h
resembles the pseudo code in greater detail than the corresponding ωVPA.

main :=
do forever

traverse(getTree())

function traverse(node n) :=
if ’n is not a leaf’ then

traverse(n’s left child)
traverse(n’s right child)

return

S → g1S
S1 → aS1S1a | aa

h(a) = c, h(a) = r
F = {S}

(a) Pseudo code (b) ωVPA (c) ωRG(BG)+h

Fig. 1. Representations of traverse(...)’s calls and returns
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