Skip to main content

Termination of Rewriting with Right-Flat Rules

  • Conference paper
Term Rewriting and Applications (RTA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4533))

Included in the following conference series:

Abstract

Termination and innermost termination are shown to be decidable for term rewrite systems whose right-hand side terms are restricted to be shallow (variables occur at depth at most one) and linear. Innermost termination is also shown to be decidable for shallow rewrite systems. In all cases, we show that nontermination implies nontermination starting from flat terms. The proof is completed by using the useful enabling result that, for right shallow rewrite systems, existence of nonterminating derivations starting from a given term is decidable. We also show that termination is undecidable for shallow rewrite systems. For right-shallow systems, general and innermost termination are both undecidable.

The first two authors were supported by Spanish Min. of Educ. and Science by the LogicTools project (TIN2004-03382). The second author was also supported by Spanish Min. of Educ. and Science by the GRAMMARS project (TIN2004-07925-C03-01). The third author was supported in part by the National Science Foundation under grant CCR-0326540.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)

    Google Scholar 

  2. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: Proc. ACM SIGPLAN 2006 Conf. Prog. Lang. Design and Impl. PLDI, pp. 415–426. ACM, New York (2006)

    Chapter  Google Scholar 

  3. Dershowitz, N.: Termination of linear rewriting systems. In: Even, S., Kariv, O. (eds.) Automata, Languages and Programming. LNCS, vol. 115, pp. 448–458. Springer, Heidelberg (1981)

    Google Scholar 

  4. Godoy, G., Tiwari, A.: Deciding fundamental properties of right-(ground or variable) rewrite systems by rewrite closure. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 91–106. Springer, Heidelberg (2004)

    Google Scholar 

  5. Godoy, G., Tiwari, A.: Termination of rewrite systems with shallow right-linear, collapsing, and right-ground rules. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 164–176. Springer, Heidelberg (2005)

    Google Scholar 

  6. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program. ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

    Article  MATH  Google Scholar 

  7. Huet, G., Lankford, D.S.: On the uniform halting problem for term rewriting systems. INRIA, Le Chesnay, France, Technical Report 283 (1978)

    Google Scholar 

  8. Mitsuhashi, I., Oyamaguchi, M., Jacquemard, F.: The confluence problem for flat TRSs. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 68–81. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Plaisted, D.A.: Polynomial time termination and constraint satisfaction tests. In: Kirchner, C. (ed.) Rewriting Techniques and Applications. LNCS, vol. 690, pp. 405–420. Springer, Heidelberg (1993)

    Google Scholar 

  10. Takai, T., Kaji, Y., Seki, H.: Right-linear finite path overlapping term rewriting systems effectively preserve recognizability. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 246–260. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)

    Google Scholar 

  12. Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Information Processing Letters 25, 141–143 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang, Y., Sakai, M.: Decidability of termination for semi-constructor trss, left-linear shallow trss and related systems. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 343–356. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Baader

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Godoy, G., Huntingford, E., Tiwari, A. (2007). Termination of Rewriting with Right-Flat Rules . In: Baader, F. (eds) Term Rewriting and Applications. RTA 2007. Lecture Notes in Computer Science, vol 4533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73449-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73449-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73447-5

  • Online ISBN: 978-3-540-73449-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics