Skip to main content

Simple Proofs of Characterizing Strong Normalization for Explicit Substitution Calculi

  • Conference paper
Term Rewriting and Applications (RTA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4533))

Included in the following conference series:

Abstract

We present a method of lifting to explicit substitution calculi some characterizations of the strongly normalizing terms of λ-calculus by means of intersection type systems. The method is first illustrated by applying to a composition-free calculus of explicit substitutions, yielding a simpler proof than the previous one by Lengrand et al. Then we present a new intersection type system in the style of sequent calculus, and show that it characterizes the strongly normalizing terms of Dyckhoff and Urban’s extension of Herbelin’s explicit substitution calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. J. Funct. Program. 1, 375–416 (1991)

    Article  MATH  Google Scholar 

  2. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. J. Symb. Log. 48, 931–940 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven University of Technology (1997)

    Google Scholar 

  4. Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization. Theor. Comput. Sci. 211, 375–395 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Proceedings of CSN 1995 (Computing Science in the Netherlands), pp. 62–72 (1995)

    Google Scholar 

  6. Bonelli, E.: Perpetuality in a named lambda calculus with explicit substitutions. Math. Structures Comput. Sci. 11, 47–90 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proceedings of ICFP 2000, pp. 233–243 (2000)

    Google Scholar 

  8. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17, 279–301 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dougherty, D., Lescanne, P.: Reductions, intersection types, and explicit substitutions. Math. Structures Comput. Sci. 13, 55–85 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dougherty, D., Ghilezan, S., Lescanne, P.: Characterizing strong normalization in a language with control operators. In: Proceedings of PPDP 2004, pp. 155–166 (2004)

    Google Scholar 

  11. Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. J. Log. Comput. 13, 689–706 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Kesner, D., Lengrand, S.: Resource operators for the λ-calculus. Inform. and Comput. 205, 419–473 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Uniform normalisation beyond orthogonality. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 122–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Kikuchi, K.: A direct proof of strong normalization for an extended Herbelin’s calculus. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 244–259. Springer, Heidelberg (2004)

    Google Scholar 

  16. Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M., van Bakel, S.: Intersection types for explicit substitutions. Inform. and Comput. 189, 17–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  18. Polonovski, E.: Strong normalization of \(\overline{\lambda}\mu\tilde{\mu}\)-calculus with explicit substitutions. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 423–437. Springer, Heidelberg (2004)

    Google Scholar 

  19. Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 561–577. Academic Press, San Diego (1980)

    Google Scholar 

  20. van Raamsdonk, F., Severi, P.: On normalisation. Technical Report CS-R9545, CWI (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Baader

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kikuchi, K. (2007). Simple Proofs of Characterizing Strong Normalization for Explicit Substitution Calculi. In: Baader, F. (eds) Term Rewriting and Applications. RTA 2007. Lecture Notes in Computer Science, vol 4533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73449-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73449-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73447-5

  • Online ISBN: 978-3-540-73449-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics