Abstract
We present a method of lifting to explicit substitution calculi some characterizations of the strongly normalizing terms of λ-calculus by means of intersection type systems. The method is first illustrated by applying to a composition-free calculus of explicit substitutions, yielding a simpler proof than the previous one by Lengrand et al. Then we present a new intersection type system in the style of sequent calculus, and show that it characterizes the strongly normalizing terms of Dyckhoff and Urban’s extension of Herbelin’s explicit substitution calculus.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. J. Funct. Program. 1, 375–416 (1991)
Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. J. Symb. Log. 48, 931–940 (1983)
Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven University of Technology (1997)
Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization. Theor. Comput. Sci. 211, 375–395 (1999)
Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Proceedings of CSN 1995 (Computing Science in the Netherlands), pp. 62–72 (1995)
Bonelli, E.: Perpetuality in a named lambda calculus with explicit substitutions. Math. Structures Comput. Sci. 11, 47–90 (2001)
Curien, P.-L., Herbelin, H.: The duality of computation. In: Proceedings of ICFP 2000, pp. 233–243 (2000)
Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17, 279–301 (1982)
Dougherty, D., Lescanne, P.: Reductions, intersection types, and explicit substitutions. Math. Structures Comput. Sci. 13, 55–85 (2003)
Dougherty, D., Ghilezan, S., Lescanne, P.: Characterizing strong normalization in a language with control operators. In: Proceedings of PPDP 2004, pp. 155–166 (2004)
Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. J. Log. Comput. 13, 689–706 (2003)
Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)
Kesner, D., Lengrand, S.: Resource operators for the λ-calculus. Inform. and Comput. 205, 419–473 (2007)
Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Uniform normalisation beyond orthogonality. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 122–136. Springer, Heidelberg (2001)
Kikuchi, K.: A direct proof of strong normalization for an extended Herbelin’s calculus. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 244–259. Springer, Heidelberg (2004)
Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M., van Bakel, S.: Intersection types for explicit substitutions. Inform. and Comput. 189, 17–42 (2004)
Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995)
Polonovski, E.: Strong normalization of \(\overline{\lambda}\mu\tilde{\mu}\)-calculus with explicit substitutions. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 423–437. Springer, Heidelberg (2004)
Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 561–577. Academic Press, San Diego (1980)
van Raamsdonk, F., Severi, P.: On normalisation. Technical Report CS-R9545, CWI (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kikuchi, K. (2007). Simple Proofs of Characterizing Strong Normalization for Explicit Substitution Calculi. In: Baader, F. (eds) Term Rewriting and Applications. RTA 2007. Lecture Notes in Computer Science, vol 4533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73449-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-73449-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73447-5
Online ISBN: 978-3-540-73449-9
eBook Packages: Computer ScienceComputer Science (R0)