Abstract
The paradigm of Granular Computing has quite recently emerged as an area of research on its own; in particular, it is pursued within rough set theory initiated by Zdzisław Pawlak. Granules of knowledge consist of entities with a similar in a sense information content. An idea of a granular counterpart to a decision/information system has been put forth, along with its consequence in the form of the hypothesis that various operators, aimed at dealing with information, should factorize sufficiently faithfully through granular structures [7], [8]. Most important such operators are algorithms for inducing classifiers. We show results of testing few well-known algorithms for classifier induction on well–used data sets from Irvine Repository in order to verify the hypothesis. The results confirm the hypothesis in case of selected representative algorithms and open a new prospective area of research.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazan, J.G.: A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1, pp. 321–365. Physica Verlag, Heidelberg (1998)
Grzymala–Busse, J.W.: Data with missing attribute values: Generalization of rule indiscernibility relation and rule induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)
Leśniewski, S.: On the foundations of set theory. Topoi 2, 7–52 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Polkowski, L.: Rough Sets. Mathematical Foundations. Physica Verlag, Heidelberg (2002)
Polkowski, L.: Toward rough set foundations. Mereological approach (a plenary lecture). In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)
Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk) in: [10], pp. 57–62
Polkowski, L.: A model of granular computing with applications (a feature talk) in: [11], pp. 9–16
Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)
GrC05. Proceedings of IEEE 2005 Conference on Granular Computing, Beijing, China, July 2005, IEEE Computer Society Press, New York (2005)
GrC06. Proceedings of IEEE 2006 Conference on Granular Computing, Atlanta, May 2006, IEEE Computer Society Press, New York (2006)
Skowron, A., et al.: RSES: A system for data analysis, available at http://logic.mimuw.edu/plrses/
Nguyen, S.H.: Regularity analysis and its applications in Data Mining. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 289–378. Physica Verlag, Heidelberg (2000)
Wilcoxon, F.: Individual comparisons by ranking method. Biometrics 1, 80–83 (1945)
Wojna, A.: Analogy–based reasoning in classifier construction. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 277–374. Springer, Heidelberg (2005)
Wróblewski, J.: Adaptive aspects of combining approximation spaces. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough Neural Computing, pp. 139–156. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Polkowski, L., Artiemjew, P. (2007). On Granular Rough Computing: Factoring Classifiers Through Granulated Decision Systems. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-73451-2_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73450-5
Online ISBN: 978-3-540-73451-2
eBook Packages: Computer ScienceComputer Science (R0)