Skip to main content

Toward Approximate Adaptive Learning

  • Conference paper
Rough Sets and Intelligent Systems Paradigms (RSEISP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4585))

  • 1217 Accesses

Abstract

The problem considered in this paper is how the classification of observed behaviour of organisms can be used to influence adaptive learning, beneficially. The solution to this problem hearkens back to the pioneering work during the 1980s by Zdzisław Pawlak and others on classification of objects and approximation spaces, where elementary sets of equivalent objects a framework for perceptions concerning observed behaviours. The seminal work by Oliver Selfridge and Chris J.C.H. Watkins on delay rewards and adaptive learning, also during the 1980s, combined with more recent work on reinforcement learning provide a basis for the forms of adaptive learning introduced in this article. In addition, recent work on approximation spaces has led to what is known as approximate adaptive learning. This article presents two forms of run-and-twiddle (RT) adaptive learning, each using the Watkins’ stopping time strategy to mark the end of an episode. Twiddling amounts to adjusting what one does to achieve a better result. This becomes more apparent in approximate RT adaptive learning introduced in this article, where a record of observed behaviour patterns during each episode recorded in an ethogram makes it possible to define a pattern-based learning rate in the context of approximation spaces. Both forms of adaptive learning are actor-critic methods. The contribution of this article is the introduction of two forms of adaptive learning with Watkins’ stopping time strategy with differential discount on returns in both cases and differential learning rate for adaptive learning in the context of approximation spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audi, R. (ed.): The Cambridge Dictionary of Philosophy, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Berenji, H.R.: A convergent actor–critic-based FRL algorithm with application to power management of wireless transmitters. IEEE Trans. on Fuzzy Systems 11/4, 478–485 (2003)

    Article  Google Scholar 

  3. Doob, J.L.: Stochastic Processes. Chapman & Hall, London (1953)

    MATH  Google Scholar 

  4. Gomolińska, A.: Approximation spaces based on similarity and dissimilarity. In: Lindemann, G., Schlingloff, H., Burkhard, H.-D., Czaja, L., Penczek, W., Salwicki, A., Skowron, A., Suraj, Z. (eds.) CS&P’06. Concurrency, Specification and Programming. Infomatik-Berichte, vol. (206), pp. 446–457 (2006)

    Google Scholar 

  5. Geramifard, A., Bowling, M., Sutton, R.S.: Incremental least-squares temporal difference learning. In: AAA06. Proc. 21st National Conf. on AI, pp. 356–361 (2006)

    Google Scholar 

  6. Henry, C., Peters, J.F.: Image Pattern Recognition Using Approximation Spaces and Near Sets. In: JRS07. Proc. 2007 Joint Rough Set Symposium, Toronto, Canada (May 14-16, 2007)

    Google Scholar 

  7. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen & Co Ltd, London (1964)

    MATH  Google Scholar 

  8. Mitzenmacher, M., Upfal, E.: Probability and Computing. Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  9. Orłowska, E.: Semantics of Vague Concepts, Applications of Rough Sets, Institute for Computer Science, Polish Academy of Sciences, Report 469 (March 1982)

    Google Scholar 

  10. The Oxford English Dictionary. Oxford University Press, London (1933).

    Google Scholar 

  11. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Pavel, M.: Fundamentals of Pattern Recognition, 2nd edn. Marcel Dekker, New York (1993)

    MATH  Google Scholar 

  13. Pawlak, Z.: Classification of Objects by Means of Attributes, Institute for Computer Science, Polish Academy of Sciences, Report 429 (March 1981)

    Google Scholar 

  14. Pawlak, Z.: Rough Sets, Institute for Computer Science, Polish Academy of Sciences, Report 431 (March 1981)

    Google Scholar 

  15. Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peters, J.F.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae 75(1-4), 407–433 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Peters, J.F.: Near Sets. Toward Approximation Space-Based Object Recognition. In: JRS07. Proc. 2007 Joint Rough Set Symposium, Toronto, Canada (May 14-16, 2007)

    Google Scholar 

  19. Peters, J.F., Borkowski, M., Henry, C., Lockery, D., Gunderson, D., Ramanna, S.: Line-Crawling Bots That Inspect Electric Power Transmission Line Equipment. In: ICARA 2006. Proc. 3rd Int. Conf. on Autonomous Robots and Agents, Palmerston North, NZ, pp. 39–44 (2006)

    Google Scholar 

  20. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. Lindemann, G., Schlilngloff, H., et al. (eds.) CS&P’2006. Proc. Concurrency, Specification & Programming. Informatik-Berichte Nr. 206, Humboldt-Universität zu Berlin, pp. 434–445 (2006)

    Google Scholar 

  21. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of objects: Extension of approximation space model. Fundamenta Informaticae 77 (in press, 2007)

    Google Scholar 

  22. Peters, J.F.: Classification of objects by means of features. In: Kacprzyk, J., Skowron, A. (eds.) FOCI07. Proc. Special Session on Rough Sets, IEEE Symposium on Foundations of Computational Intelligence, IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  23. Peters, J.F., Henry, C.: Approximation spaces in off-policy Monte Carlo learning. In: Engineering Applications of Artificial Intelligence (in press, 2007)

    Google Scholar 

  24. Peters, J.F.: Rough ethology: Toward a Biologically-Inspired Study of Collective behaviour in Intelligent Systems with Approximation Spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 153–174. Springer, Heidelberg (2005)

    Google Scholar 

  25. Peters, J.F., Henry, C.: Reinforcement learning with approximation spaces. Fundamenta Informaticae 71(2-3), 323–349 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Peters, J.F., Henry, C., Ramanna, S.: Rough Ethograms: Study of Intelligent System behaviour. In: Kłopotek, M.A., Wierzchoń, S., Trojanowski, K. (eds.): New Trends in Intelligent Information Processing and Web Mining (IIS05), Gdańsk, Poland, June 13-16, 2005, pp. 117–126 (2005)

    Google Scholar 

  27. Polkowski, L.: Rough Sets. Mathematical Foundations. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  28. Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 2. Studies in Fuzziness and Soft Computing, vol. 19. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  29. Precup, D., Sutton, R.S., Paduraru, C., Koop, A., Singh, S.: Off-policy with recognizers. Advances in Neural Information Processing Systems, pp. 1–8 (2006)

    Google Scholar 

  30. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. John Wiley & Sons, Toronto (1981)

    MATH  Google Scholar 

  31. Selfridge, O.G.: Some themes and primitives in ill-defined systems. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds.) Adaptive Control of Ill-Defined Systems, Plenum Press, London (1984)

    Google Scholar 

  32. Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y., Wildberger, A.M. (eds.) Soft Computing, Simulation Councils, San Diego, pp. 18–21 (1995)

    Google Scholar 

  33. Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 175–189. Springer, Heidelberg (2005)

    Google Scholar 

  34. Skowron, A., Stepaniuk, J., Peters, J.F., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2-3), 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  36. Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: Pal et al. [11] (2204), pp. 43–84

    Google Scholar 

  37. Stepaniuk, J.: Approximation spaces, reducts and representatives. In [28], pp. 109–126

    Google Scholar 

  38. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge, MA (1998)

    Google Scholar 

  39. Wolski, M.: Similarity as nearness: Information quanta, approximation spaces and nearness structures. In: Proc. CS&P 2006. Infomatik-Berichte, pp. 424–433 (2006)

    Google Scholar 

  40. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. Thesis, supervisor: Richard Young. King’s College, Cambridge University (May 1989)

    Google Scholar 

  41. Watkins, C.J.C.H., Dayan, P.: Reinforcement learning. Encyclopedia of Cognitive Science. Macmillan, UK (2003).

    Google Scholar 

  42. Wawrzyński, P.: Intensive Reinforcement Learning, Ph.D. dissertation, supervisor: Andrzej Pacut, Institute of Control and Computational Engineering, Warsaw University of Technology (May 2005)

    Google Scholar 

  43. Whitehead, A.N.: Process and Reality. Macmillan, UK (1929)

    MATH  Google Scholar 

  44. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marzena Kryszkiewicz James F. Peters Henryk Rybinski Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peters, J.F. (2007). Toward Approximate Adaptive Learning. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73451-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73450-5

  • Online ISBN: 978-3-540-73451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics