Abstract
This paper presents a new approach to precompute all odd points [3]P, [5]P,..., [2k − 1]P, k ≥ 2 on an elliptic curve over \(\mathbb{F}_p\). Those points are required for the efficient evaluation of a scalar multiplication, the most important operation in elliptic curve cryptography. The proposed method precomputes the points in affine coordinates and needs only one single field inversion for the computation. The new method is superior to all known methods that also use one field inversion. Compared to methods that require several field inversions for the precomputation, the proposed method is faster for a broad range of ratios of field inversions and field multiplications. The proposed method benefits especially from ratios as they occur on smart cards.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avanzi, R.: A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 130–143. Springer, Heidelberg (2004)
Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography (London Mathematical Society). Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (1999)
Cohen, H., Frey, G.: Handbook of elliptic and hyperelliptic curve cryptography. CRC Press, Boca Raton (2005)
Ciet, M., Joye, M., Lauter, K., Montgomery, P.: Trading Inversions for Multiplications in Elliptic Curve Cryptography. Designs, Codes and Cryptography 39(2), 189–206 (2006)
Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)
Eisenträger, K., Lauter, K., Montgomery, P.: Fast elliptic curve arithmetic and improved Weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 343–354. Springer, Heidelberg (2003)
Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)
Infineon Technologies, http://www.infineon.com/
Johnson, D., Menezes, A.: The Elliptic Curve Digital Signature Algorithm (ECDSA) University of Waterloo, Technical Report CORR 99-34 (1999), available at http://www.cacr.math.uwaterloo.ca
Joye, P., Paillier, P.: GCD-Free Algorithms for Computing Modular Inverses. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 243–253. Springer, Heidelberg (2003)
Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)
Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
Möller, B.: Improved Techniques for Fast Exponentiation. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)
Möller, B.: Fractional Windows Revisited: Improved Signed-Digit Representations for Efficient Exponentiation. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 137–153. Springer, Heidelberg (2005)
Muir, J., Stinson, D.: New Minimal Weight Representations for Left-to-Right Window Methods. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 366–383. Springer, Heidelberg (2005)
Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T.: Signed Binary Representations Revisited. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 123–139. Springer, Heidelberg (2004)
Renesas Technologies, http://www.renesas.com/homepage.jsp/
Seysen, M.: Using an RSA Accelerator for Modular Inversion. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 226–236. Springer, Heidelberg (2005)
Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Design, Codes and Cryptography 19, 195–249 (2000)
Schmidt-Samoa, K., Semay, O., Takagi, T.: Analysis of Some Fractional Window Recoding Methods and their Application to Elliptic Curve Cryptosystems. IEEE Transactions on Computers 55(1), 1–10 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Dahmen, E., Okeya, K., Schepers, D. (2007). Affine Precomputation with Sole Inversion in Elliptic Curve Cryptography. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds) Information Security and Privacy. ACISP 2007. Lecture Notes in Computer Science, vol 4586. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73458-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-73458-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73457-4
Online ISBN: 978-3-540-73458-1
eBook Packages: Computer ScienceComputer Science (R0)