Skip to main content

Sufficient Conditions for Coarse-Graining Evolutionary Dynamics

  • Conference paper
Foundations of Genetic Algorithms (FOGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4436))

Included in the following conference series:

  • 1189 Accesses

Abstract

It is commonly assumed that the ability to track the frequencies of a set of schemata in the evolving population of an infinite population genetic algorithm (IPGA) under different fitness functions will advance efforts to obtain a theory of adaptation for the simple GA. Unfortunately, for IPGAs with long genomes and non-trivial fitness functions there do not currently exist theoretical results that allow such a study. We develop a simple framework for analyzing the dynamics of an infinite population evolutionary algorithm (IPEA). This framework derives its simplicity from its abstract nature. In particular we make no commitment to the data-structure of the genomes, the kind of variation performed, or the number of parents involved in a variation operation. We use this framework to derive abstract conditions under which the dynamics of an IPEA can be coarse-grained. We then use this result to derive concrete conditions under which it becomes computationally feasible to closely approximate the frequencies of a family of schemata of relatively low order over multiple generations, even when the bitstsrings in the evolving population of the IPGA are long.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, J.K.E. (ed.) Advances in Genetic Programming, MIT Press, Cambridge (1994)

    Google Scholar 

  2. Burjorjee, K., Pollack, J.B.: Theme preservation and the evolution of representation. In: Theory of Representation Workshop, GECCO (2005)

    Google Scholar 

  3. Burjorjee, K., Pollack, J.B.: Theme preservation and the evolution of representation. In: IICAI, pp. 1444–1463 (2005)

    Google Scholar 

  4. Burjorjee, K., Pollack, J.B.: A general coarse-graining framework for studying simultaneous inter-population constraints induced by evolutionary operations. In: GECCO 2006. Proceedings of the 8th annual conference on Genetic and evolutionary computation, ACM Press, New York (2006)

    Google Scholar 

  5. Contreras, A.A., Rowe, J.E., Stephens, C.R.: Coarse-graining in genetic algorithms: Some issues and examples. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 874–885. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  7. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan (1975)

    Google Scholar 

  8. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1996)

    Google Scholar 

  9. Prügel-Bennet, A., Shapiro, J.L.: An analysis of genetic algorithms using statistical mechanics. Phys. Rev. Lett. 72(9), 1305 (1994)

    Article  Google Scholar 

  10. Prügel-Bennett, A., Shapiro, J.L.: The dynamics of a genetic algorithm for the ising spin-glass chain. Physica D 104, 75–114 (1997)

    Article  MathSciNet  Google Scholar 

  11. Rattray, M., Shapiro, J.L.: Cumulant dynamics of a population under multiplicative selection, mutation, and drift. Theoretical Population Biology 60, 17–32 (2001)

    Article  MATH  Google Scholar 

  12. Rowe, J.E., Vose, M.D., Wright, A.H.: Differentiable coarse graining. Theor. Comput. Sci 361(1), 111–129 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shapiro, J.L.: Statistical mechanics theory of genetic algorithms. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 87–108. Springer, Heidelberg (2001)

    Google Scholar 

  14. Slatkin, M.: Selection and polygenic characters. PNAS 66(1), 87–93 (1970)

    Article  Google Scholar 

  15. Stephens, C.R., Waelbroeck, H.: Effective degrees of freedom in genetic algorithms and the block hypothesis. In: ICGA, pp. 34–40 (1997)

    Google Scholar 

  16. Stephens, C.R., Zamora, A.: EC theory: A unified viewpoint. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Toussaint, M.: The Evolution of Genetic Representations and Modular Neural Adaptation. PhD thesis, Institut fr Neuroinformatik, Ruhr-Universiät-Bochum, Germany (2003)

    Google Scholar 

  18. Toussaint, M.: On the evolution of phenotypic exploration distributions. In: Foundations of Genetic Algorithms 7 (FOGA VII), Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  19. Vose, M.D.: The simple genetic algorithm: foundations and theory. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  20. Wright, A.H., Vose, M.D., Rowe, J.E.: Implicit parallelism. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christopher R. Stephens Marc Toussaint Darrell Whitley Peter F. Stadler

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burjorjee, K. (2007). Sufficient Conditions for Coarse-Graining Evolutionary Dynamics. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds) Foundations of Genetic Algorithms. FOGA 2007. Lecture Notes in Computer Science, vol 4436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73482-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73482-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73479-6

  • Online ISBN: 978-3-540-73482-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics