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Abstract

Previous theoretical results in the Evolutionary Computation liter-
ature only permit analyses of evolutionary dynamics in the immediate
term — i.e. over a single generation — or in the asymptote of time.
There are currently no theoretical results that permit a principled anal-
ysis of any non-trivial aspect of evolutionary dynamics in the short
term, i.e. over a small number of generations. In the absence of such
analyses we believe that accurate theories of evolutionary adaptation
will continue to evade discovery. We describe a technique called coarse-
graining which has been widely used in other scientific disciplines to
study the emergent phenomena of complex systems. This technique
is a promising approach towards the formulation of more principled
theories of evolutionary adaptation because, if successfully applied, it
permits a principled analysis of evolutionary dynamics across multiple
generations. We develop a simple yet powerful abstract framework for
studying the dynamics of an infinite population evolutionary algorithm
(IPEA). Using this framework we show that the short term dynamics
of an IPEA can be coarse-grained if it satisfies certain abstract condi-
tions. We then use this result to argue that the dynamics of an infinite
population genetic algorithm with uniform crossover and fitness pro-
portional selection can be coarse-grained for at least a small number
of generations, provided that the initial population belongs to a par-
ticular class of distributions (which includes the uniform distribution),
and the fitness function satisfies a relatively weak constraint.

1 Introduction

Simple Genetic Algorithms (GAs) have successfully been used to adapt
solutions for a wide range of search problems. One of the most impor-
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tant open questions, one might argue the most important question, in
GA research today is the question of how these algorithms perform
adaptation. Complete theories of how the iterated effect of selection
and variation on an initially random population drives adaptation have
been scarce in the thirty odd years since GAs were first proposed. We
know of just one work in which a theory of adaptation has been com-
pletely laid out — the seminal work of Holland [9], in which a theory
of adaptation, that later came to called the Building Block Hypothesis
[8, 11] was proposed.

The Building Block Hypothesis, though well-formulated, is not nec-
essarily accurate. It has been sharply criticized for lacking theoretical
justification and experimental results have been published that draw
its veracity into question. On the theoretical side, for example, Wright
et. al. state in [20], “The various claims about GAs that are tradi-
tionally made under the name of the building block hypothesis have, to
date, no basis in theory, and in some cases, are simply incoherent.”.
On the experimental side Syswerda has reported in [16] that uniform
crossover often outperforms one-point and two-point crossover on the
fitness functions that he has studied. Summing up Syswerda’s results
Fogel remarks [7, p.140] “Generally, uniform crossover yielded better
performance than two-point crossover, which in turn yielded better
performance than one-point crossover”. These results contradict the
building block hypothesis because uniform crossover is extremely dis-
ruptive of short schemata whereas one and two-point crossover are
certainly more likely to conserve short schemata and combine their
defining bits in children produced during recombination.

1.1 The Absence of Principled Theories of Adaptation

A very general way of understanding the absence of principled the-
ories of adaptation in the Evolutionary Computation literature is to
note firstly that the set of GAs comprise a class of complex systems,
secondly that adaptation is an emergent phenomenon of many (but
not all) of the systems in this class, and finally that it is in general
very difficult to formulate accurate theories of how or why particular
emergent phenomena arise (or do not arise) from the dynamics of the
complex systems in some class [2].

The state of any system in a class of complex systems is typically
modeled as a tuple of N state variables. The dynamics of the systems
in this class is modeled by a system of N parameterized coupled dif-
ference or differential equations. A set of parameter values determines
a particular dynamical system, and when these values are ‘plugged-in’
to the equations they describe how the state variables of that system
change over time. One (dead-end) approach to understanding how
some target phenomenon arises through the dynamics of a class of
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complex systems is to attempt to solve the set of equations, i.e. to
attempt to obtain a closed form formula which, given some parameter
values that determine some system and the state of that system at
time step t = 0 (the initial condition), gives the state of the system
at some time-step t. In principle, one can then attempt to under-
stand the target phenomenon by studying the closed-form solution.
The equations of a complex system however are always non-linear, and
typically unsolvable, so this approach has a low likelihood of success.
Another approach is to attempt to glean an understanding of the target
phenomenon by numerically simulating the dynamics of a well chosen
subset of the systems in the class under a well chosen subset of ini-
tial conditions. This approach becomes infeasible as N , the number of
state variables, becomes large.

The dynamics of an EA can be modeled by a system of coupled non-
linear difference equations called an infinite population model (IPEAs).
The time-dependent state variables in such a system is the expected
frequencies of individual genomes1. The simulation of one generation
of an IPEA with N state variables has time complexity O(N3). An
infinite population model of a GA (IPGA) with bitstring genomes of
length ℓ has N = 2ℓ state variables. Hence, the time complexity for a
‘naive’ numeric simulation of an IPGA is O(8ℓ). (See [19, p.36] for a
description of how the Fast Walsh Transform can be used to bring this
bound down to O(3ℓ).) Even when the Fast Walsh Transform is used,
computation time still increases exponentially with ℓ. Vose reported
in 1999 that computational concerns force numeric simulation to be
limited to cases where ℓ ≤ 20.

Given this discission, we are now in a position to give a more specific
reason for the absence of principled theories of adaptation in Evolu-
tionary Computation. Current results in the field only allow one to
analyze aspects of IPEA dynamics at the asymptote of time (e.g. [19])
or in the immediate term, i.e. over the course of a single generation
(e.g. [10, 14]). For IPEAs with large genome sizes and non-trivial
fitness functions, there are currently no theoretical results that permit
a principled analysis of any non-trivial aspect of IPEA dynamics in
the short term (i.e. over a small number of generations). We believe
however that a principled analysis of the short term is necessary in
order to formulate accurate theories of adaptation. In the absence of
results that permit such analysis we believe that accurate theories of
adaptation will continue to evade discovery.

1Evolutionary Biologists use the word genome to refer to the total hereditary informa-
tion that is encoded in the DNA of an individual, and we will as well. This same concept
is called a genotype in the evolutionary computation literature. Unfortunately this usage
creates a terminological inconsistency. The word genotype is used in evolutionary biology
to refer to a different concept, one that is similar to what is called a schema in evolutionary
computation
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1.2 The Promise of Coarse-Graining

Coarse-graining is a technique that has often been used in theoretical
physics for studying some target property (e.g. temperature) of many-
body systems with very large numbers of state variables (e.g. gases).
This technique allows one to reformulate some system of equations
with many state variables (called the fine-grained system) as a new
system of equations that describes the time-evolution of a smaller set of
state variables (the coarse-grained system). This reformulation is done
using a surjective (typically non-injective) function, called the partition
function, between the fine-grained state space and the coarse-grained
state space. States in the fine-grained state space that share some
key property (e.g. energy) are projected to a single state in the coarse-
grained state space. Metaphorically speaking, just as a stationary light
bulb projects the shadow of some moving 3D object onto a flat 2D wall,
the partition function projects the changing state of the fine-grained
system onto states in the state space of the coarse-grained system.

Three conditions are necessary for a coarse-graining to be success-
ful. Firstly, the dimensionality of the coarse-grained state space should
be smaller than the dimensionality of the fine-grained state space (in-
formation about the original system will hence be lost). Secondly the
dynamics described by the coarse-grained system of equations must
‘shadow’ the dynamics described by the original system of equations
in the sense that if the projected state of the original system at time
t = 0 is equal to the state of the coarse-grained system at time t = 0
then at any other time t, the projected state of the original system
should be closely approximated by the state of the coarse-grained sys-
tem. Thirdly, the coarse-grained system of equations must not depend
on any of the original state variables.

In the second condition given above, if the approximation is instead
an equality then the coarse-graining is said to be exact.

Suppose x(t) and y(t) are the time-dependent state vectors of some
system and a coarse-graining of that system respectively. Now, if the
partition function projects x(0) to y(0), then, since none of the state
variables of the original system are needed to express the dynamics
of the coarse-grained system, one can determine how the state of the
coarse-grained system y(t) (the shadow state) changes over time with-
out needing to determine how the state in the fine-grained system x(t)

(the shadowed state) changes. Thus, even though for any t, one might
not be able to determine x(t), one can always be confident that y(t) is
its projection. Therefore, if the number of state variables of the coarse-
grained space is small enough, one can numerically determine changes
to the shadow state without first needing to determine changes to the
shadowed state.

4



1.3 Inconsistent Use of the Phrase ‘Coarse-Graining’

The phrase ‘coarse-graining’ has, till now, been used in the Evolu-
tionary Computation literature to describe two ways of rewriting the
system of equations of an IPGA, neither of which satisfy the three
conditions for a successful coarse-graining that we listed above. For
instance in [14] the phrase coarse-graining is used to describe how the
N equations of an IPGA can be rewritten as a system of 3log2N (≥ N)
equations where the state variables are the frequencies of schemata.
Such a rewriting does not qualify as a coarse-graining because the state
space of the new system of equations is bigger than the state space of
the original system. This way of rewriting the system of equations was
later called an embedding in [15].

However in [15] the phrase coarse-graining was used to refer to a
reformulation of the original equations such that each equation in the
new system has a form that is similar to the form of the equations
in the original system. The new system of equations however is not
independent of the state variables in the original system; the fitness
function used in the new system of equations depends directly on the
values of these variables. The authors do note that the “coarse-graining
gives rise to a time dependent coarse-grained fitness”. But this simply
obscures the fact that the new system of equations is dependent on the
(time dependent) state variables of the original system. A principled
analysis of the dynamics of the new state variables cannot tractably be
‘carried forward’ over multiple generations because at each generation
the determination of these values relies on the calculation of the values
of the state variables of the fine-grained system.

Elsewhere the phrase coarse-graining has been defined as “a col-
lection of subsets of the search space that covers the search space”[6],
and more egregiously as “just a function from a genotype set to some
other set”[5].

Coarse-graining has a precise meaning in the scientific literature.
It is important that the names of useful ideas from other fields be used
consistently.

1.4 Formal Approaches to Coarse-Graining

When the state variables in the fine-grained and coarse-grained sys-
tems are the frequencies of distributions, i.e. when their values always
sum to 1, then the formal concept of compatibility [19, p. 188] is one
way of capturing the idea of coarse-graining. Wright et al. show in
[20] that there exist conditions under which variation in an IPGA is
compatible. They then argue that the same cannot be said for fitness
proportional selection “except in the trivial case where fitness is a con-
stant for each schema in a schema [partition]”. In other words, except
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in the case where the constraint on the fitness function is so severe
that it renders any coarse-graining result essentially useless. Their ar-
gument suggests that it may not in principle be possible to show that
evolution is compatible for any weaker constraint on the fitness func-
tion. This negative claim is cause for concern because it casts doubt
on the possibility of obtaining a useful coarse-graining of evolutionary
dynamics.

Compatibility however formalizes a very strong notion of coarse-
graining. If an operator is compatible then the dynamics induced by its
iterated application to some initial distribution can be exactly coarse-
grained regardless of the choice of initial distribution. We introduce a
concept called concordance which formalizes a slightly weaker notion
of coarse-graining. If an operator is concordant on some subset U of
the set of all distributions then the dynamics induced by the iterated
application of the operator to some initial distribution can be exactly
coarse-grained if the initial distribution is in U .

We use the concept of concordance to show that if variation and
the fitness function of an IPEA satisfy certain abstract conditions then,
provided that the initial population is in U , evolutionary dynamics over
at least a small number of generations can be coarse-grained.

This abstract result is of no use if it cannot be used in practice. To
show that this is not the case, we argue that these conditions will be
satisfied by an IPGA with fitness proportional selection and uniform
crossover provided that the initial population belongs to a particular
class of distributions (which includes the uniform distribution), and
the fitness function satisfies a relatively weak (statistical) constraint.

1.5 Coarse-Graining and Population Genetics

The practice of assigning fitness values to genotypes is so ubiquitous in
Population Genetics that it can be considered to be part of the foun-
dations of that field. Without this practice mathematical models of
changes to the genotype frequencies of an evolving population would
not be tractable. This practice however is not without its detractors
— most notably Mayr, who has labeled it “Bean Bag Genetics”. The
practice is dissatisfying to many because it reflects a willingness on the
part of Population Geneticists to accept (without a principled argu-
ment) what amounts to a statement that the evolutionary dynamics
over the state space of genome frequencies can be coarse-grained such
that a) the new state space is a set of genotype frequencies, b) the
coarse-grained dynamics over this state space is also evolutionary in
form, c) the ‘fitness’ of each genotype is simply the average fitness of
all genomes that belong to the genotype.

The work in this paper demonstrates that such a coarse-graining
is indeed possible provided that certain conditions are met. We only
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prove, in this paper, that these conditions are sufficient. However, we
also conjecture that they (or trivially different variants) are necessary.
If this conjecture is true then the widespread practice of assigning fit-
ness values to genotypes within Population Genetics amounts to an
implicit assumption that these conditions are true. Thus, if our hy-
pothesis is true, then this paper makes an important contribution to
Population Genetics by unearthing implicit assumptions that are in-
herent within the foundations of that field.

1.6 Structure of this Paper

The rest of this paper is organized as follows: In the next section we
define the basic mathematical objects and notation used in this paper.
In section 3 we define the concepts of semi-concordance, concordance
and global concordance that are useful for formalizing the idea of a
coarse-graining. In section 4 and section 5 we prove some stepping-
stone results about selection and variation. We use these results in
section 6 where we prove that an IPEA that satisfies certain abstract
conditions can be coarse-grained. The proofs in sections 5 and 6 rely
on lemmas which have been relegated to and proved in the appendix.
In section 7 we describe a class of IPGAs with non-trivial fitness func-
tions. We argue that these IPGAs approximately satisfy the abstract
conditions of section 6 and can hence be coarse-grained for a small
number of generations. We conclude in section 8 with a summary of
our work and a discussion of future work.

2 Mathematical Preliminaries

Let X,Y be sets and let ξ : X → Y be some function. We use the
notation 〈y〉ξ to denote the pre-image of y, i.e. the set {x ∈ X |β(x) =
y}. For any subset A ⊂ X we use the notation ξ(A) to denote the set
{y ∈ Y | ξ(a) = y and a ∈ A}

As in [17], for any set X we use the notation ΛX to denote the
set of all distributions over X , i.e. ΛX denotes set {f : X →
[0, 1] |

∑

x∈X f(x) = 1}. For any set X , let 0X : X → {0} be the
constant zero function over X . For any set X , an m-parent transmis-
sion function [13, 1, 18] over X is an element of the set

{

T :

m+1
∏

1

X → [0, 1]

∣

∣

∣

∣

∀x1, . . . , xm ∈ X,
∑

x∈X

T (x, x′
1, . . . , x

′
m) = 1

}

Extending the notation introduced above, we denote this set by
ΛX
m. Following [17], we use conditional probability notation in our

denotation of transmission functions. Thus an m-parent transmission
function T (x, x1, . . . , xm) is denoted T (x|x1, . . . , xm).
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A transmission function can be used to model the individual-level
effect of mutation, which operates on one parent and produces one
child, and indeed the individual-level effect of any variation operation
which operates on any numbers of parents and produces one child.

Our scheme for modeling EA dynamics is based on the one used in
[17]. We model the genomic populations of an EA as distributions over
the genome set. The population-level effect of the evolutionary oper-
ations of an EA is modeled by mathematical operators whose inputs
and outputs are such distributions.

The expectation operator, defined below, is used in the definition
of the selection operator, which follows thereafter.

Definition 1. (Expectation Operator) Let X be some finite set,
and let f : X → R

+ be some function. We define the expectation
operator Ef : ΛX ∪ 0X → R

+ ∪ {0} as follows:

Ef (p) =
∑

x∈X

f(x)p(x)

The selection operator is parameterized by a fitness function. It
models the effect of fitness proportional selection on a population of
genomes.

Definition 2. (Selection Operator) Let X be some finite set and
let f : X → R

+ be some function. We define the Selection Operator
Sf : ΛX → ΛX as follows:

(Sfp)(x) =
f(x)p(x)

Ef (p)

The population-level effect of variation is modeled by the variation
operator. This operator is parameterized by a transmission function
which models the effect of variation at the individual level.

Definition 3. (Variation Operator2) Let X be a countable set,
and for any m ∈ N

+, let T ∈ ΛX
m be a transmission function function

over X. We define the variation operator VT : ΛX → ΛX as follows:

(VT p)(x) =
∑

(x1,...,xm)
∈

Qm
1

X

T (x|x1, . . . , xm)

m
∏

i=1

p(xi)

The next definition describes the projection operator (previously
used in [19] and [17]). A projection operator that is parameterized
by some function β ‘projects’ distributions over the domain of β, to
distributions over its co-domain.

2also called the Mixing Operator in [19] and [17]
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Definition 4. (Projection Operator) Let X be a countable set,
let Y be some set, and let β : X → Y be a function. We define the
projection operator, Ξβ : ΛX → ΛY as follows:

(Ξβp )(y) =
∑

x∈〈y〉
β

p(x)

and call Ξβp the β-projection of p.

3 A Formalization of Coarse-Graining

The following definition introduces some convenient function-related
terminology.

Definition 5. (Partitioning, Theme Set, Themes, Theme
Class) Let X, K be sets and let β : X → K be a surjective func-
tion. We call β a partitioning, call the co-domain K of β the theme
set of β, call any element in K a theme of β, and call the pre-image
〈k〉β of some k ∈ K, the theme class of k under β.

The next definition introduces concepts which are useful for for-
malizing the notion of coarse-graining

Definition 6 (Semi-Concordance, Concordance, Global Concor-
dance). Let G,K be sets, let W : ΛG → ΛG be an operator, let
β : G → K be a partitioning, and let U ⊆ ΛG such that Ξβ(U) = ΛK.
We say that W is semi-concordant with β on U if there exists an op-
erator Q : ΛK → ΛK such that for all p ∈ U , Q ◦ Ξβp = Ξβ ◦Wp, i.e.
the following diagram commutes:

U
W

//

Ξβ

��

ΛG

Ξβ

��

ΛK
Q

// ΛK

Since β is surjective, if Q exists, it is clearly unique; we call it the
quotient. We call G,K,W, and U the domain, co-domain, primary
operator and turf respectively. If in addition W(U) ⊆ U we say that
W is concordant with β on U . If in addition U = ΛG we say that W
is globally concordant with β.

Global Concordance is a stricter condition than concordance, which
in turn is a stricter condition than semi-concordance. It is easily seen
that global concordance is equivalent to Vose’s notion of compatibility
[19, p. 188].

If some operator W is concordant with some function β over some
turf U with some quotient Q, then for any distribution pK ∈ Ξβ(U),
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and all distributions pG ∈ 〈pK〉Ξβ
, one can study the projected effect

of the repeated application of W to pG simply by studying the effect
of the repeated application of Q to pK . If the size of K is small then a
computational study of the projected effect of the repeated application
of W to distributions in 〈pK〉Ξβ

becomes feasible. Therefore, if one can
derive such a concordance then one has succeeded in coarse-graining
the dynamics induced by W for any initial condition in 〈pK〉Ξβ

. (Note
that the partition function Ξβ of the coarse-graining is not the same
as the partitioning β of the concordance)

4 Global Concordance of Variation

We show that some variation operator VT is globally concordant with
some partitioning if a relationship, that we call ambivalence, exists
between the transmission function T of the variation operator and the
partitioning.

To illustrate the idea of ambivalence consider a partition function
β which partitions a genome set G into three subsets. Fig 1 depicts
the behavior of a two-parent transmission function that is ambivalent
under β. Given two parents and some child, the probability that the
child will belong to some theme class depends only on the theme classes
of the parents and not on the specific parent genomes. Hence the name
‘ambivalent’ — it captures the sense that when viewed from the coarse-
grained level of the theme classes, a transmission function ‘does not
care’ about the specific genomes of the parents or the child.

The definition of ambivalence that follows is equivalent to but more
useful than the definition given in [5]

Definition 7. (Ambivalence) Let G,K be countable sets, let T ∈ ΛG
m

be a transmission function, and let β : G → K be a partitioning. We
say that T is ambivalent under β if there exists some transmission
function D ∈ ΛK

m, such that for all k, k1, . . . , km ∈ K and for any
x1 ∈ 〈k1〉β , . . . , xm ∈ 〈km〉β ,

∑

x∈〈k〉
β

T (x|x1, . . . , xm) = D(k|k1, . . . , km)

If such a D exits, it is clearly unique. We denote it by T
−→
β and call it

the theme transmission function.

Suppose T ∈ ΩX
m is ambivalent under some β : X → K, we can

use the projection operator to express the projection of T under β as
follows: for all k, k1, . . . , km ∈ K, and any x1 ∈ 〈k1〉β , . . . , xm ∈ 〈km〉β ,

T
−→
β (k|k1, . . . km) is given by (Ξβ(T (· |x1, . . . , xm)))(k).
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Figure 1: Let β : G → K be a coarse-graining which partitions the genome
set G into three theme classes. This figure depicts the behavior of a two-
parent variation operator that is ambivalent under β. The small dots denote
specific genomes and the solid unlabeled arrows denote the recombination of
these genomes. A dashed arrow denotes that a child from a recombination
may be produced ‘somewhere’ within the theme class that it points to, and
the label of a dashed arrow denotes the probability with which this might
occur. As the diagram shows the probability that the child of a variation
operation will belong to a particular theme class depends only on the theme
classes of the parents and not on their specific genomes

The following theorem shows that a variation operator is globally
concordant under some partitioning if it is parameterized by a trans-
mission function which is ambivalent under that partitioning.

Theorem 1 (Global Concordance of Variation). Let G and K be
countable sets, let T ∈ ΛG

m be a transmission function and let β :
G → K be some partitioning such that T is ambivalent under β. Then
VT : ΛG → ΛG is globally concordant under β with quotient V

T
−→
β , i.e.

the following diagram commutes:

ΛG
VT

//

Ξβ

��

ΛG

Ξβ

��

ΛK
V

T
−→
β

// ΛK

Proof: For any p ∈ ΛG,

(Ξβ ◦ VT p)(k)
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=
∑

x∈〈k〉
β

∑

(x1,...,xm)

∈
m
Q

1

X

T (x|x1, . . . , xm)

m
∏

i=1

p(xi)

=
∑

(x1,...,xm)

∈
m
Q

1

X

∑

x∈〈k〉
β

T (x|x1, . . . , xm)

m
∏

i=1

p(xi)

=
∑

(x1,...,xm)

∈
m
Q

1

X

m
∏

i=1

p(xi)
∑

x∈〈k〉
β

T (x|x1, . . . , xm)

=
∑

(k1,...,km)

∈
m
Q

1

K

∑

(x1,...,xm)

∈
m
Q

j=1

〈kj〉β

m
∏

i=1

p(xi)
∑

x∈〈k〉
β

T (x|x1, . . . , xm)

=
∑

(k1,...,km)

∈
m
Q

1

K

∑

(x1,...,xm)

∈
m
Q

j=1

〈kj〉β

m
∏

i=1

p(xi)T
−→
β (k|k1, . . . , km)

=
∑

(k1,...,km)

∈
m
Q

1

K

T
−→
β (k|k1, . . . , km)

∑

(x1,...,xm)

∈
m
Q

j=1

〈kj〉β

m
∏

i=1

p(xi)

=
∑

(k1,...,km)

∈
m
Q

1

K

T
−→
β (k|k1, . . . , km)

∑

x1∈〈k1〉β

. . .
∑

xm∈〈km〉
β

p(x1) . . . p(xm)

=
∑

(k1,...,km)

∈
m
Q

1

K

T
−→
β (k|k1, . . . , km)

(

∑

x1∈〈k1〉

p(x1)

)

. . .

(

∑

xm∈〈km〉

p(xm)

)

=
∑

(k1,...,km)

∈
m
Q

1

K

T
−→
β (k|k1, . . . , km)

m
∏

i=1

(

(Ξβp)(ki)

)

= (V
T

−→
β ◦ Ξβp)(k)

The implicit parallelism theorem in [20] is similar to the theorem
above. Note however that the former theorem only shows that varia-
tion is globally concordant if firstly, the genome set consists of “fixed
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length strings, where the size of the alphabet can vary from position to
position”, secondly the partition over the genome set is a schema par-
tition, and thirdly variation is ‘structural’ (see [20] for details). The
Global Concordance of Variation theorem has none of these specific
requirements. Instead it is premised on the existence of an abstract
relationship – ambivalence – between the variation operation and a
partitioning. The abstract nature of this relationship makes this theo-
rem applicable to evolutionary algorithms other than GAs. In addition
this theorem illuminates the essential relationship between ‘structural’
variation and schemata which was used (implicitly) in the proof of the
implicit parallelism theorem.

In [5] it is shown that a variation operator that models any combi-
nation of variation operations that are commonly used in GAs — i.e.
any combination of mask based crossover and ‘canonical’ mutation, in
any order — is ambivalent under any partitioning that maps bitstrings
to schemata (such a partitioning was called a schema partitioning).
Therefore ‘common’ variation in IPGAs is globally concordant with
any schema partitioning. This is precisely the result of the implicit
parallelism theorem.

5 Limitwise Semi-Concordance of Selection

For some fitness function f : G → R
+ and some partition function

β : G → K let us say that f is thematically invariant under β if, for
any schema k ∈ K, the genomes that belong to 〈k〉β all have the same
fitness. Paraphrasing the discussion in [20] using the terminology de-
veloped in this paper, Wright et. al. argue (but do not prove) that if
the selection operator is globally concordant under some schema par-
titioning β : G → K then the fitness function that parameterizes the
selection operator is ‘schematically’ invariant under β. It is relatively
simple to use contradiction to prove a generalization of this statement
for arbitrary partitionings.

Thematic invariance is a very strict condition for a fitness function.
An IPGA whose fitness function meets this condition is unlikely to
yield any substantive information about the dynamics of real world
GAs.

As stated above, the selection operator is not globally concordant
unless the fitness function satisfies thematic invariance, however if
the set of distributions that selection operates over (i.e. the turf)
is appropriately constrained, then, as we show in this section, the
selection operator is semi-concordant over the turf even when the
fitness function only satisfies a much weaker condition called thematic
mean invariance.
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For any partitioning β : G → K, any theme k, and any distribu-
tion p ∈ ΛG, the theme conditional operator, defined below, returns
a conditional distribution in ΛG that is obtained by normalizing the
probability mass of the elements in 〈k〉β by (Ξβp)(k)

Definition 8 (Theme Conditional Operator). Let G be some countable
set, let K be some set, and let β : G → K be some function. We define
the theme conditional operator Cβ : ΛG ×K → ΛG ∪ 0G as follow: For
any p ∈ ΛG, and any k ∈ K, Cβ(p, k) ∈ ΛG ∪ 0G such that for any
x ∈ 〈k〉β,

(Cβ(p, k))(x) =

{

0 if (Ξβp)(k) = 0
p(x)

(Ξβp)(k)
otherwise

A useful property of the theme conditional operator is that it can be
composed with the expected fitness operator to give an operator that
returns the average fitness of the genomes in some theme class. To be
precise, given some finite genome set G, some partitioning β : G → K,
some fitness function f : G → R

+, some distribution p ∈ ΛG, and
some theme k ∈ K, Ef ◦ Cβ(p, k) is the average fitness of the genomes
in 〈k〉β . This property proves useful in the following definition.

Definition 9 (Bounded Thematic Mean Divergence, Thematic Mean
Invariance). Let G be some finite set, let K be some set, let β : G → K

be a partitioning, let f : G → R
+ and f∗ : K → R

+ be functions, let
U ⊆ ΛG, and let δ ∈ R

+. We say that the thematic mean divergence
of f with respect to f∗ on U under β is bounded by δ ≥ 0 if for any
p ∈ U and for any k ∈ K

|Ef ◦ Cβ(p, k)− f∗(k)| ≤ δ

If δ = 0 we say that f is thematically mean invariant with respect to
f∗ on U

The next definition gives us a means to measure a ‘distance’ be-
tween real valued functions over finite sets.

Definition 10 (Manhattan Distance Between Real Valued Functions).
Let X be a finite set then for any functions f, h of type X → R we
define the manhattan distance between f and h, denoted by d(f, h), as
follows:

d(f, h) =
∑

x∈X

|f(x)− h(x)|

It is easily checked that d is a metric.
Let f : G → R

+, β : G → K and f∗ : G → R
+ be functions

with finite domains, and let U ∈ ΛG. The following theorem shows
that if the thematic mean divergence of f with respect to f∗ on U

under β is bounded by some δ > 0, then in the limit as δ → 0, Sf is
semi-concordant with β on U .
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Theorem 2 (Limitwise Semi-Concordance of Selection). Let G and
K be finite sets, let β : G → K be a partitioning, Let U ⊆ ΛG such
that Ξβ(U) = ΛK , let f : G → R

+, f∗ : K → R
+ be some functions

such that the thematic mean divergence of f with respect to f∗ on U

under β is bounded by δ, then for any p ∈ U and any ǫ > 0 there exists
a δ′ > 0 such that,

δ < δ′ ⇒ d(Ξβ ◦ Sfp,Sf∗ ◦ Ξβp) < ǫ

We depict the result of this theorem as follows:

U
Sf

//

Ξβ

��

lim
δ→0

ΛG

Ξβ

��

ΛK
Sf∗

// ΛK

Proof: For any p ∈ U and for any k ∈ K,

(Ξβ ◦ Sfp)(k)

=
∑

g∈〈k〉
β

(Sfp)(g)

=
∑

g∈〈k〉
β

f(g).p(g)
∑

g′∈G f(g′).p(g′)

=

∑

g∈〈k〉
β

f(g).(Ξβp)(k).(Cβ(p, k))(g)

∑

k′∈K

∑

g′∈〈k′〉
β

f(g′).(Ξβp)(k′)(Cβ(p, k′))(g′)

=

(Ξβp)(k)
∑

g∈〈k〉
β

f(g).(Cβ(p, k))(g)

∑

k′∈K

(Ξβp)(k′)
∑

g′∈〈k′〉
β

f(g′).(Cβ(p, k′))(g′)

=
(Ξβp)(k).Ef ◦ Cβ(p, k)

∑

k′∈K

(ΞβpG)(k
′).Ef ◦ Cβ(p, k′)

= (SEf◦Cβ(p,·) ◦ Ξβp)(k)

So we have that

d(Ξβ ◦ Sfp,Sf∗ ◦ Ξβp) = d(SEf◦Cβ(p,·) ◦ Ξβp,Sf∗ ◦ Ξβp)

By Lemma, 4 (in the appendix) for any ǫ > 0 there exists a δ1 > 0
such that,

d(Ef ◦ Cβ(p, .), f
∗) < δ1 ⇒ d(SEf◦Cβ(p,·)(Ξβp),Sf∗(Ξβp) < ǫ
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Now, if δ < δ′

|K| , then d(Ef ◦ Cβ(p, .), f
∗) < δ1

Corollary 1. If δ = 0, i.e. if f is thematically mean invariant with
respect to f∗ on U , then Sf is semi-concordant with β on U with
quotient Sf∗ , i.e. the following diagram commutes:

U
Sf

//

Ξβ

��

ΛG

Ξβ

��

ΛK
Sf∗

// ΛK

6 Limitwise Concordance of Evolution

The two definitions below formalize the idea of an infinite population
model of an EA, and its dynamics 3.

Definition 11 (Evolution Machine). An evolution machine (EM) is
a tuple (G, T, f) where G is some set called the domain, f : G →
R

+ is a function called the fitness function and T ∈ ΛG
m is called the

transmission function.

Definition 12 (Evolution Epoch Operator). Let E = (G, T, f) be an
evolution machine. We define the evolution epoch operator GE : ΛG →
ΛG as follows:

GE = VT ◦ Sf

For some evolution machine E, our aim is to give sufficient condi-
tions under which, for any t ∈ Z

+, Gt
E is approaches concordance in

a limit. The following definition gives us a formal way to state one of
these conditions.

Definition 13 (Non-Departure). Let E = (G, T, f) be an evolution
machine, let β : G → K be some partitioning, and let U ⊆ ΛG. We
say that E is non-departing over U if

VT ◦ Sf (U) ⊆ U

Note that our definition does not require Sf (U) ⊆ U in order for E to
be non-departing from U .

3The definition of an EM given here is different from its definition in [3, 4]. The
fitness function in this definition maps genomes directly to fitness values. It therefore sub-
sumes the genotype-to-phenotype and the phenotype-to-fitness functions of the previous
definition. In previous work these two functions were always composed together; their
subsumption within a single function increases conceptual clarity.
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Theorem 3 (Limitwise Concordance of Evolution). Let E = (G, T, f),
be an evolution machine such that G is finite, let β : G → K be some
partitioning, and let U ⊆ ΛG such that Ξβ(U) = ΛK. Suppose that the
following statements are true:

1. The thematic mean divergence of f with respect to f∗ on U under
β is bounded by δ

2. T is ambivalent under β

3. E is non-departing over U

Then, letting E∗ = (K,T
−→
β , f∗) be an evolution machine, for any t ∈

Z
+ and any p ∈ U ,

1. Gt
Ep ∈ U

2. For any ǫ > 0, there exists δ′ > 0 such that,

δ < δ′ ⇒ d(Ξβ ◦ Gt
Ep , Gt

E∗ ◦ Ξβp) < ǫ

We depict the result of this theorem as follows:

U
Gt
E

//

Ξβ

��

lim
δ→0

U

Ξβ

��

ΛK

Gt
E∗

// ΛK

Proof: We prove the theorem for any t ∈ Z
+
0 . The proof is by

induction on t. The base case, when t = 0, is trivial. For some n = Z
+
0 ,

let us assume the hypothesis for t = n. We now show that it is true
for t = n + 1. For any p ∈ U , by the inductive assumption Gn

Ep is
in U . Therefore, since E is non-departing over U , Gn+1

E p ∈ U . This
completes the proof of the first part of the hypothesis. For a proof of
the second part note that,

d(Ξβ ◦ Gn+1
E p , Gn+1

E∗ ◦ Ξβp )

= d(Ξβ ◦ VT ◦ Sf ◦ Gn
Ep , VT

−→
β ◦ Sf∗ ◦ Gn

E∗ ◦ Ξβp )

= d(V
T

−→
β ◦ Ξβ ◦ Sf ◦ Gn

Ep , VT
−→
β ◦ Sf∗ ◦ Gn

E∗ ◦ Ξβp) (by theorem 1)

Hence, for any ǫ > 0, by Lemma 2 there exists δ1 such that

d(Ξβ ◦ Sf ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦ Ξβp) < δ1 ⇒

d(Ξβ ◦ Gn+1
E p , Gn+1

E∗ ◦ Ξβp ) < ǫ
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As d is a metric it satisfies the triangle inequality. Therefore we have
that

d(Ξβ ◦ Sf ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦ Ξβp) ≤

d(Ξβ ◦ Sf ◦ Gn
Ep , Sf∗ ◦ Ξβ ◦ Gn

Ep)+

d(Sf∗ ◦ Ξβ ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦ Ξβp)

By our inductive assumption Gn
Ep ∈ U . So, by theorem 2 there exists

a δ2 such that

δ < δ2 ⇒ d(Ξβ ◦ Sf ◦ Gn
Ep , Sf∗ ◦ Ξβ ◦ Gn

Ep) <
δ1

2

By lemma 3 there exists a δ3 such that

d(Ξβ ◦ Gn
Ep , G

n
E∗ ◦ Ξβp) < δ3 ⇒

d(Sf∗ ◦ Ξβ ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦ Ξβp) <
δ1

2

By our inductive assumption, there exists a δ4 such that

δ < δ4 → d(Ξβ ◦ Gn
Ep , G

n
E∗ ◦ Ξβp) < δ3

Therefore, letting δ′ = min(δ2, δ4) we get that

δ < δ∗ ⇒ d(Ξβ ◦ Gn+1
E p,Gn+1

E∗ ◦ Ξβp) < ǫ

7 Sufficient Conditions for Coarse-Graining IPGA

Dynamics

We now use the result in the previous section to argue that the dy-
namics of an IPGA with uniform crossover and fitness proportional
selection can be coarse-grained for at least a small number of genera-
tions, provided that the initial population satisfies a constraint called
approximate thematic uniformity and the fitness function satisfies a
relatively weak constraint called low-variance schematic fitness distri-
bution. We stress at the outset that our argument is principled but
informal, i.e. though the argument rests relatively straightforwardly
on theorem 3, we do find it necessary in places to appeal to the reader’s
intuitive understanding of GA dynamics.

For any n ∈ Z
+, let Bn be the set of all bitstrings of length n.

For some ℓ ≫ 1 and some m ≪ ℓ, let β : Bℓ → Bm be some schema
partitioning. Let f∗ : Bm → R

+ be some function. For any k ∈ Bm,
let Dk ∈ ΛR

+

be some distribution over the reals with low variance
such that the mean of distribution Dk is f∗(k). Let f : Bℓ → R

+

be a fitness function such that for any k ∈ Bm, the fitness values of
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the elements of 〈k〉β are independently drawn from the distribution
Dk. For such a fitness function we say that fitness is schematically
distributed with low-variance.

Let U be a set of distributions such that for any k ∈ Bm and any
p ∈ U , Cβ(p, k) is approximately uniform. It is easily checked that U

satisfies the condition Ξβ(U) = ΛBm . We say that the distributions in
U are approximately schematically uniform.

Appealing to the weak law of large numbers, for any randomly
chosen population p ∈ U , and any δ ∈ R

+, P(|Ef ◦ Cβ(p, k)− f∗(k)| <
δ) → 1 as ℓ − m → ∞. Because we have chosen ℓ and m such that
ℓ − m is ‘large’, it is reasonable to assume that the thematic mean
divergence of f on U under β is bounded by some ‘small’ value.

Let T ∈ ΛBℓ be a transmission function that models the application
of uniform crossover. In sections 6 and 7 of [5] we rigorously prove that
a transmission function that models any mask based crossover opera-
tion is ambivalent under any schema partitioning. Uniform crossover is
mask based, and β is a schema partitioning, therefore T is ambivalent
under β.

Let p 1
2
∈ ΛB1 be such that p 1

2
(0) = 1

2 and p 1
2
(1) = 1

2 . For any
p ∈ U , Sfp may be ‘outside’ U because there may be one or more
k ∈ Bm such that Cβ(Sfp, k) is not quite uniform. Recall that for any
k ∈ Bm the variance of Dk is low. Therefore even though Sfp may
be ‘outside’ U , the deviation from thematic uniformity is not likely
to be large. Furthermore, given the low variance of Dk, the marginal
distributions of Cβ(Sfp, k) will be very close to p 1

2
. Given these facts

and our choice of transmission function, for all k ∈ K, Cβ(VT ◦ Sfp, k)
will be more uniform than Cβ(Sfp, k), and we can assume that VT ◦Sfp

is in U . In other words, we can assume that E is non-departing over
U .

Let E = (Bℓ, T, f) and E∗ = (Bm, T
−→
β , f∗) be evolution machines.

By the discussion above and the limitwise concordance of evolution
theorem one can expect that for any approximately thematically uni-
form distribution p ∈ U (including of course the uniform distribution
over Bℓ), for at least a small number of generations, the dynamics of
E∗ when initialized with Ξβp will closely approximate the projected
dynamics of E when initialized with p.

8 Conclusion

We believe that accurate theories that explain evolutionary adaptation
will only be forthcoming when one can perform principled analyses of
the short term dynamics of evolutionary systems. Previous theoretical
results in the Evolutionary Computation literature do not permit such
analyses. The technique of coarse-graining, which has widely been used
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in other sciences, is a promising approach towards the formulation of
more accurate theories of evolutionary adaptation because, if success-
fully applied, it permits a principled analysis of evolutionary dynamics
across multiple generations.

Previous coarse-graining results in EC were only obtained when
variation was limited to mutation[12], or when selection was not ap-
plied at all [20]. The technique of obtaining a coarse-graining by
showing compatibility, which was used in [20, 12], can only be suc-
cessfully applied to selecto-recombinative evolution if the fitness func-
tion is schematically invariant, i.e. constant for each schema in some
schema partition. Schematic invariance is unfortunately a very strong
constraint to place on a fitness function. It is therefore highly unlikely
that any contribution to a general theory of GA adaptation will be
forthcoming from studies of IPGAs that satisfy this constraint.

In this paper we developed a simple yet powerful abstract frame-
work for analyzing evolutionary dynamics. We then argued that the
evolutionary dynamics of an IPGA with fitness proportional selection
and uniform crossover can be coarse-grained for at least a small number
of generations if its initial distribution satisfies a constraint called ap-
proximate schematic uniformity (a very reasonable condition), and its
fitness is low-variance schematically distributed. The latter condition
is much weaker than the schematic invariance constraint previously
required to coarse-grain selecto-recombinative evolutionary dynamics.

Acknowledgements: I thank Jordan Pollack for supporting this work
and the anonymous reviewers for their very helpful comments and sug-
gestions.
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Appendix

Lemma 1. For any finite set X, and any metric space (Υ, d),let A :
Υ → ΛX and let B : X → [Υ → [0, 1]] be functions4 such that for any
h ∈ Υ, and any x ∈ X, (B(x))(h) = (A(h))(x). For any x ∈ X, and
for any h∗ ∈ Υ, if the following statement is true

∀x ∈ X, ∀ǫx > 0, ∃δx > 0, ∀h ∈ Υ,

d(h, h∗) < δx ⇒ |(B(x))(h)− (B(x))(h∗)| < ǫx

Then we have that

∀ǫ > 0, ∃δ > 0, ∀h ∈ Υ, d(h, h∗) < δ ⇒ d(A(h),A(h∗)) < ǫ

This lemma says that A is continuous at h∗ if for all x ∈ X , B(x)
is continuous at h∗.
Proof: We first prove the following two claims

Claim 1.

∀x ∈ X s.t. (B(x))(h∗) > 0, ∀ǫx > 0, ∃δx > 0, ∀h ∈ Υ,

d(h, h∗) < δx ⇒ |(B(x))(h) − (B(x))(h∗)| < ǫx.(B(x))(h
∗)

This claim follows from the continuity of B(x) at h∗ for all x ∈ X

and the fact that (B(x))(h∗) is a positive constant w.r.t. h.

Claim 2. for all h ∈ Υ

∑

x∈Xs.t.

(A(h∗))(x)>
(A(h))(x)

|(A(h∗))(x)−(A(h))(x)| =
∑

x∈Xs.t.

(A(h))(x)>
(A(h∗))(x)

|(A(h))(x)−(A(h∗))(x)|

The proof of this claim is as follows: for all h ∈ Υ,

∑

x∈X

(A(h∗)(x)) − (A(h))(x) = 0

⇒
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

(A(h∗))(x) − (A(h))(x) −
∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

(A(h))(x) − (A(h∗))(x) = 0

⇒
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

(A(h∗))(x) − (A(h))(x) =
∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

(A(h))(x) − (A(h∗))(x)

4For any sets X,Y we use the notation [X → Y ] to denote the set of all functions from
X to Y
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⇒

∣

∣

∣

∣

∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

(A(h∗))(x) − (A(h))(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

(A(h))(x) − (A(h∗))(x)

∣

∣

∣

∣

∣

⇒
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

|(A(h∗))(x) − (A(h))(x)| =
∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

|(A(h))(x) − (A(h∗))(x)|

We now prove the lemma. Using claim 1 and the fact that X is finite,
we get that ∀ǫ > 0, ∃δ > 0, ∀h ∈ [X → R] such that d(h, h∗) < δ,

∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

|(B(x))(h∗)− (B(x))(h)| <
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

ǫ

2
.(B(x))(h∗)

⇒
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

|(A(h∗))(x) − (A(h))(x)| <
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

ǫ

2
.(A(h∗))(x)

⇒
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

|(A(h∗))(x) − (A(h))(x)| <
ǫ

2

By Claim 2 and the result above, we have that ∀ǫ > 0, ∃δ > 0, ∀h ∈
[X → R] such that d(h, h∗) < δ,

∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

|(A(h))(x) − (A(h∗))(x)| <
ǫ

2

Therefore, given the two previous results, we have that ∀ǫ > 0, ∃δ > 0,
∀h ∈ [X → R] such that d(h, h∗) < δ,

∑

x∈X

|(A(h))(x) − (A(h∗)(x))| < ǫ

Lemma 2. Let X be a finite set, and let T ∈ ΛX
m be a transmission

function. Then for any p′ ∈ ΛX and any ǫ > 0, there exists a δ > 0
such that for any p ∈ ΛX ,

d(p , p′) < δ ⇒ d(VT p , VT p
′) < ǫ

Sketch of Proof: Let A : ΛX → ΛX be defined such that
(A(p))(x) = (VT p)(x). Let B : X → [ΛX → [0, 1]] be defined such that
(B(x))(p) = (VT p)(x). The reader can check that for any x ∈ X , B(x)
is a continuous function. The application of lemma 1 completes the
proof.

By similar arguments, we obtain the following two lemmas.
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Lemma 3. Let X be a finite set, and let f : X → R
+ be a function.

Then for any p′ ∈ ΛX and any ǫ > 0, there exists a δ > 0 such that
for any p ∈ ΛX,

d(p , p′) < δ ⇒ d(Sfp , Sfp
′) < ǫ

Lemma 4. Let X be a finite set, and let p ∈ ΛX be a distribution.
Then for any f ′ ∈ [X → R

+], and any ǫ > 0, there exists a δ > 0 such
that for any f ∈ [X → R

+],

d(f , f ′) < δ ⇒ d(Sfp , Sf ′p) < ǫ
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