Abstract
This paper addresses the scale-space clustering and a validation scheme. The scale-space clustering is an unsupervised method for grouping spatial data points based on the estimation of probability density function (PDF) using a Gaussian kernel with a variable scale parameter. It has been suggested that the detected cluster, represented as a mode of the PDF, can be validated by observing the lifetime of the mode in scale space. Statistical properties of the lifetime, however, are unclear. In this paper, we propose a concept of the ‘critical scale’ and explore perspectives on handling it for the cluster validation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parzen, E.: On the estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)
Chakravarthy, S.V., Ghosh, J.: Scale-Based Clustering Using the Radial Basis Function Network. IEEE Trans. on Neural Networks 7(5), 1250–1261 (1996)
Roberts, S.J.: Parametric and non-parametric unsupervised cluster analysis. Pattern Recognition 30(2), 261–272 (1997)
Nakamura, E., Kehtarnavaz, N.: Determining number of clusters and prototype locations via multi-scale clustering. Pattern Recognition Letters 19(14), 1265–1283 (1998)
Hinneburg, A., Keim, D.A.: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Proc. 4th International Conference on Knowledge Discovery and Data Mining, pp. 58–65 (1998)
Leung, Y., Zhang, J.-S., Xu, Z.-B.: Clustering by scale-space filtering. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(12), 1396–1410 (2000)
Carreira-Perpiñán, M.Á., Williams, C.K.I.: On the number of modes of a Gaussian mixture. In: Griffin, L.D, Lillholm, M. (eds.) Scale Space Methods in Computer Vision. LNCS, vol. 2695, pp. 625–640. Springer, Heidelberg (2003)
Carreira-Perpiñán, M.Á.: Fast nonparametric clustering with Gaussian blurring mean-shift. In: ICML 2006. ACM International Conference Proceeding Series, vol. 148, pp. 153–160 (2006)
Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory 21(1), 32–40 (1975)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine intelligence 17(8), 790–799 (1995)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Griffin, L.D., Lillholm, M.: Mode estimation using pessimistic scale space tracking. In: Griffin, L.D, Lillholm, M. (eds.) Scale Space Methods in Computer Vision. LNCS, vol. 2695, pp. 266–280. Springer, Heidelberg (2003)
Witkin, A.P.: Scale space filtering. In: Proc. of 8th IJCAI, pp. 1019–1022 (1983)
Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)
Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure. IEICE Japan, Trans. D (in Japanese) 68, 508–514 (1985)
Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision 10, 237–252 (1999)
Sporring, J., Nielsen, M., Florack, L.M.J., Johansen, P. (eds.): Gaussian Scale-Space Theory. Computational Imaging and Vision Series. Kluwer, Dordrecht (1997)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)
Johansen, P.: On the classification of toppoints in scale space. Journal of Mathematical Imaging and Vision 4(1), 57–67 (1994)
Griffin, L.D., Colchester, A.: Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image and Vision Computing 13(7), 543–557 (1995)
Florack, L.M.J., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12(1), 65–79 (2000)
Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. Journal of Mathematical Imaging and Vision 18(2), 169–189 (2003)
Sakai, T., Imiya, A.: Figure field analysis of linear scale-space image. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 374–385. Springer, Heidelberg (2005)
Sakai, T., Imiya, A.: Scale-space hierarchy of singularities. In: Olsen, O.F., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 181–192. Springer, Heidelberg (2005)
Bratley, P., Fox, B.: Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator. ACM Trans. on Mathematical Software 14(1), 88–100 (1988)
Mangasarian, O.L., Setiono, R., Wolberg, W.H.: Pattern recognition via linear programming: Theory and application to medical diagnosis. In: Proc. of the Workshop on Large-Scale Numerical Optimization, pp. 22–31 (1989)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sakai, T., Imiya, A., Komazaki, T., Hama, S. (2007). Critical Scale for Unsupervised Cluster Discovery. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2007. Lecture Notes in Computer Science(), vol 4571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73499-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-73499-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73498-7
Online ISBN: 978-3-540-73499-4
eBook Packages: Computer ScienceComputer Science (R0)