Abstract
In this paper we present results on real data, focusing on personal identification based on one lead ECG, using a reduced number of heartbeat waveforms. A wide range of features can be used to characterize the ECG signal trace with application to personal identification. We apply feature selection (FS) to the problem with the dual purpose of improving the recognition rate and reducing data dimensionality. A feature subspace ensemble method (FSE) is described which uses an association between FS and parallel classifier combination techniques to overcome some FS difficulties. With this approach, the discriminative information provided by multiple feature subspaces, determined by means of FS, contributes to the global classification system decision leading to improved classification performance. Furthermore, by considering more than one heartbeat waveform in the decision process through sequential classifier combination, higher recognition rates were obtained.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chung, E.: Pocketguide to ECG Diagnosis. Blackwell Publishing Professional, Malden (December 2000)
Dubin, D.: Rapid Interpretation of EKG’s, 6th edn. Cover Publishing Company, Cover (2000)
Lipman, B.: Ecg Assessment and Interpretation. F.A. Davis (February 1994)
Israel, S., Irvine, J., Cheng, A., Wiederhold, M., Wiederhold, B.: Ecg to identify individuals. Pattern Recognition 38(1), 133–142 (2005)
Shen, T., Tompkins, W., Hu, Y.: One-lead ecg for identity verification. In: Proceedings of the Second Joint EMBS/BMES Conference, pp. 62–63 (2002)
Biel, L., Petterson, O., Phillipson, L., Wide, P.: Ecg analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement 50(3), 808–812 (2001)
Liang, H.: Ecg feature elements identification for cardiologist expert diagnosis. In: ICPR 2004. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1-7, pp. 3845–3848. IEEE Computer Society Press, Los Alamitos (2005)
Kunzmann, U., von Wagner, G., Schochlin, J.A.B.: Parameter extraction of ecg signals in real-time. Biomedizinische Technik. Biomedical engineering 47, 875–878 (2002)
Duskalov, I., Dotsinsky, I., Christov, I.: Developments in ecg acquisition, preprocessing, parameter measurement, and recording. IEEE Engineering in Medicine and Biology Magazine 17(2), 50–58 (1998)
Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)
Heijden, V., Duin, R., Ridder, D., Tax, D.: Classification, parameter estimation and state estimation - an engineering approach using MATLAB. John Wiley & Sons, Chichester (2004)
Duda, R., Hart, P., Stork, D.: Pattern classification, 2nd edn. John Wiley & Sons, Chichester (2001)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)
Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33, 25–41 (2000)
Jain, A., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(2), 153–158 (1997)
Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)
Silva, H., Fred, A.: Feature subspace ensembles: A parallel classifier combination scheme using feature selection. In: MCS 2005. LNCS, vol. 4472, Springer, Heidelberg (to appear, 2007)
Forman, G.: A pitfall and solution in multi-class feature selection for text classification. In: ICML 2004. Proceedings of the 21st International Conference on Machine Learning, pp. 38–46. ACM Press, New York (2004)
Molina, L., Belanche, L., Nebot, A.: Feature selection algorithms: A survey and experimental evaluation. lsi technical report lsi-02-62-r (2002)
Kittler, J., Pudil, P., Somol, P.: Advances in statistical feature selection. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 425–434. Springer, Heidelberg (2001)
Molina, L., Belanche, L., Nebot, A.: Feature selection algorithms: a survey and experimental evaluation. In: ICDM 2002. Proceedings. IEEE International Conference on Data Mining, pp. 306–313. IEEE Computer Society Press, Los Alamitos (2002)
Duin, R., Tax, D.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, Springer, Heidelberg (2000)
Skurichina, M., Duin, R.: Combining feature subsets in feature selection. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 165–175. Springer, Heidelberg (2005)
Fred, A.: Finding consistent clusters in data partitions. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001)
Lam, L.: Classifier combinations: Implementation and theoretical issues. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 78–86. Springer, Heidelberg (2000)
Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)
Newman, D., Hettich, D., Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
Shen, T., Tompkins, W.: Biometric statistical study of one-lead ecg features and body mass index (bmi). In: Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1162–1165. IEEE Computer Society Press, Los Alamitos (2005)
Gustafsson, F.: Determining the initial states in forward-backward filtering. IEEE Transactions on Signal Processing 44(4), 988–992 (1996)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)
Silva, H.: Feature selection in pattern recognition systems. Master’s thesis, Universidade Técnica de Lisboa, Instituto Superior Técnico (2007)
Reunanen, J.: Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 3, 1371–1382 (2003)
Tax, D., Duin, R.: Using two-class classifiers for multiclass classification. In: International Conference on Pattern Recognition, Quebec, Canada (2002)
Lam, L., Suen, S.: Application of majority voting to pattern recognition: An analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics 27, 553–568 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Silva, H., Gamboa, H., Fred, A. (2007). One Lead ECG Based Personal Identification with Feature Subspace Ensembles. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2007. Lecture Notes in Computer Science(), vol 4571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73499-4_58
Download citation
DOI: https://doi.org/10.1007/978-3-540-73499-4_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73498-7
Online ISBN: 978-3-540-73499-4
eBook Packages: Computer ScienceComputer Science (R0)