Abstract
We show that minimal k-vertex connected spanning subgraphs of a given graph can be generated in incremental polynomial time for any fixed k.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tamura, A., Shioura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM Journal on Computing 26(3), 678–692 (1997)
Berge, C.: Hypergraphs. Elsevier-North Holland, Amsterdam (1989)
Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: Generating maximal independent sets for hypergraphs with bounded edge-intersections. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 488–498. Springer, Heidelberg (2004)
Cheriyan, J., Kao, M.-Y., Thurimella, R.: Algorithms for parallel k-vertex connectivity and sparse certificates. 22, 157–174 (1993)
Coulbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, Oxford (1987)
Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected trees. SIAM Journal on Computing 117, 280–287 (1978)
Johnson, D.S., Papadimitriou, Ch.H.: On generating all maximal independent sets. Information Processing Letters 27, 119–123 (1988)
Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Enumerating spanning and connected subsets in graphs and matroids. Manuscript.
Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Generating cut conjunctions and bridge avoiding extensions in graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 156–165. Springer, Heidelberg (2005)
Lawler, E., Lenstra, J.K., Kan, A.H.G.R.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing 9, 558–565 (1980)
Matsui, T.: Algorithms for finding all the spanning trees in undirected graphs. Technical report, Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, Report METR93-08 (1993)
Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks 5, 237–252 (1975)
Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems. Discrete Applied Mathematics 117, 253–265 (2002)
Valiant, L.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8, 410–421 (1979)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K., Rudolf, G. (2007). Generating Minimal k-Vertex Connected Spanning Subgraphs. In: Lin, G. (eds) Computing and Combinatorics. COCOON 2007. Lecture Notes in Computer Science, vol 4598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73545-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-73545-8_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73544-1
Online ISBN: 978-3-540-73545-8
eBook Packages: Computer ScienceComputer Science (R0)