Skip to main content

Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms for Minimal Completions and Deletions

  • Conference paper
Computing and Combinatorics (COCOON 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4598))

Included in the following conference series:

  • 1031 Accesses

Abstract

We study graph properties that admit an increasing, or equivalently decreasing, sequence of graphs on the same vertex set such that for any two consecutive graphs in the sequence their difference is a single edge. This is useful for characterizing and computing minimal completions and deletions of arbitrary graphs into having these properties. We prove that threshold graphs and chain graphs admit such sequences. Based on this characterization and other structural properties, we present linear-time algorithms both for computing minimal completions and deletions into threshold, chain, and bipartite graphs, and for extracting a minimal completion or deletion from a given completion or deletion. Minimum completions and deletions into these classes are NP-hard to compute.

This work is supported by the Research Council of Norway through grant 166429/V30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Shapira, A.: Every monotone graph property is testable. In: Proceedings of STOC 2005 - 37th Annual Symposium on Theory of Computing, pp. 128–137 (2005)

    Google Scholar 

  2. Bakonyi, M., Bono, A.: Several results on chordal bipartite graphs. Czechoslovak Math. J. 46, 577–583 (1997)

    Article  MathSciNet  Google Scholar 

  3. Balogh, J., Bolobás, B., Weinreich, D.: Measures on monotone properties of graphs. Disc. Appl. Math. 116, 17–36 (2002)

    Article  MATH  Google Scholar 

  4. Blair, J., Heggernes, P., Telle, J.A.: A practical algorithm for making filled graphs minimal. Theoretical Computer Science 250, 125–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Math. 306, 337–350 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Disc. Appl. Math. 154, 1824–1844 (2006)

    Article  MATH  Google Scholar 

  8. Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Univ. Waterloo Res. Report, CORR 73–21 (1973)

    Google Scholar 

  9. Dearing, P.M., Shier, D.R., Warner, D.D.: Maximal chordal subgraphs. Disc. Appl. Math. 20, 181–190 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Djidjev, H.: A linear algorithm for finding a maximal planar subgraph. SIAM J. Disc. Math. 20, 444–462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

    Google Scholar 

  12. Földes, S., Hammer, P.L.: Split graphs. Congressus Numer. 19, 311–315 (1977)

    Google Scholar 

  13. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoretical Computer Science 1, 237–267 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  15. Heggernes, P., Mancini, F.: Minimal split completions of graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Heggernes, P., Mancini, F.: A completely dynamic algorithm for split graphs. Reports in Informatics 334, University of Bergen, Norway (2006)

    Google Scholar 

  17. Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. Reports in Informatics 345, University of Bergen, Norway (2007)

    Google Scholar 

  18. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing minimal interval completions: Towards better understanding of profile and pathwidth. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 2007–2024. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n αlogn) = o(n 2.376). SIAM J. Disc. Math. 19, 900–913 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hsu, W.-L.: A linear time algorithm for finding a maximal planar subgraph based on PC-trees. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 787–797. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kashiwabara, T., Fujisawa, T.: An NP-complete problem on interval graphs. IEEE Symp. of Circuits and Systems, pp. 82–83. IEEE Computer Society Press, Los Alamitos (1979)

    Google Scholar 

  23. Mahadev, N., Peled, U.: Threshold graphs and related topics. Annals of Discrete Mathematics 56. North Holland, Amsterdam (1995)

    MATH  Google Scholar 

  24. Meister, D.: Recognition and computation of minimal triangulations for AT-free claw-free and co-comparability graphs. Disc. Appl. Math. 146, 193–218 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Disc. Appl. Math. 113, 109–128 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Peng, S.-L., Chen, C.-K.: On the interval completion of chordal graphs. Disc. Appl. Math. 154, 1003–1010 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 217–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guohui Lin

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heggernes, P., Papadopoulos, C. (2007). Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms for Minimal Completions and Deletions. In: Lin, G. (eds) Computing and Combinatorics. COCOON 2007. Lecture Notes in Computer Science, vol 4598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73545-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73545-8_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73544-1

  • Online ISBN: 978-3-540-73545-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics