Abstract
We study graph properties that admit an increasing, or equivalently decreasing, sequence of graphs on the same vertex set such that for any two consecutive graphs in the sequence their difference is a single edge. This is useful for characterizing and computing minimal completions and deletions of arbitrary graphs into having these properties. We prove that threshold graphs and chain graphs admit such sequences. Based on this characterization and other structural properties, we present linear-time algorithms both for computing minimal completions and deletions into threshold, chain, and bipartite graphs, and for extracting a minimal completion or deletion from a given completion or deletion. Minimum completions and deletions into these classes are NP-hard to compute.
This work is supported by the Research Council of Norway through grant 166429/V30.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Shapira, A.: Every monotone graph property is testable. In: Proceedings of STOC 2005 - 37th Annual Symposium on Theory of Computing, pp. 128–137 (2005)
Bakonyi, M., Bono, A.: Several results on chordal bipartite graphs. Czechoslovak Math. J. 46, 577–583 (1997)
Balogh, J., Bolobás, B., Weinreich, D.: Measures on monotone properties of graphs. Disc. Appl. Math. 116, 17–36 (2002)
Blair, J., Heggernes, P., Telle, J.A.: A practical algorithm for making filled graphs minimal. Theoretical Computer Science 250, 125–141 (2001)
Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Math. 306, 337–350 (2006)
Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)
Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Disc. Appl. Math. 154, 1824–1844 (2006)
Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Univ. Waterloo Res. Report, CORR 73–21 (1973)
Dearing, P.M., Shier, D.R., Warner, D.D.: Maximal chordal subgraphs. Disc. Appl. Math. 20, 181–190 (1988)
Djidjev, H.: A linear algorithm for finding a maximal planar subgraph. SIAM J. Disc. Math. 20, 444–462 (2006)
Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: DÃaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)
Földes, S., Hammer, P.L.: Split graphs. Congressus Numer. 19, 311–315 (1977)
Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoretical Computer Science 1, 237–267 (1976)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)
Heggernes, P., Mancini, F.: Minimal split completions of graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)
Heggernes, P., Mancini, F.: A completely dynamic algorithm for split graphs. Reports in Informatics 334, University of Bergen, Norway (2006)
Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. Reports in Informatics 345, University of Bergen, Norway (2007)
Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing minimal interval completions: Towards better understanding of profile and pathwidth. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 2007–2024. Springer, Heidelberg (2007)
Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n αlogn) = o(n 2.376). SIAM J. Disc. Math. 19, 900–913 (2005)
Hsu, W.-L.: A linear time algorithm for finding a maximal planar subgraph based on PC-trees. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 787–797. Springer, Heidelberg (2005)
Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)
Kashiwabara, T., Fujisawa, T.: An NP-complete problem on interval graphs. IEEE Symp. of Circuits and Systems, pp. 82–83. IEEE Computer Society Press, Los Alamitos (1979)
Mahadev, N., Peled, U.: Threshold graphs and related topics. Annals of Discrete Mathematics 56. North Holland, Amsterdam (1995)
Meister, D.: Recognition and computation of minimal triangulations for AT-free claw-free and co-comparability graphs. Disc. Appl. Math. 146, 193–218 (2005)
Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Disc. Appl. Math. 113, 109–128 (2001)
Peng, S.-L., Chen, C.-K.: On the interval completion of chordal graphs. Disc. Appl. Math. 154, 1003–1010 (2006)
Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 217–228. Springer, Heidelberg (2006)
Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)
Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heggernes, P., Papadopoulos, C. (2007). Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms for Minimal Completions and Deletions. In: Lin, G. (eds) Computing and Combinatorics. COCOON 2007. Lecture Notes in Computer Science, vol 4598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73545-8_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-73545-8_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73544-1
Online ISBN: 978-3-540-73545-8
eBook Packages: Computer ScienceComputer Science (R0)