Skip to main content

Priority Algorithms for the Subset-Sum Problem

  • Conference paper
Computing and Combinatorics (COCOON 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4598))

Included in the following conference series:

  • 1048 Accesses

Abstract

Greedy algorithms are simple, but their relative power is not well understood. The priority framework [5] captures a key notion of “greediness” in the sense that it processes (in some locally optimal manner) one data item at a time, depending on and only on the current knowledge of the input. This algorithmic model provides a tool to assess the computational power and limitations of greedy algorithms, especially in terms of their approximability. In this paper, we study priority algorithm approximation ratios for the Subset-Sum Problem, focusing on the power of revocable decisions. We first provide a tight bound of α ≈ 0.657 for irrevocable priority algorithms. We then show that the approximation ratio of fixed order revocable priority algorithms is between β ≈ 0.780 and γ ≈ 0.852, and the ratio of adaptive order revocable priority algorithms is between 0.8 and δ ≈ 0.893.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelopoulos, S., Borodin, A.: On the power of priority algorithms for facility location and set cover. Algorithmica 40, 271–291 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arrow, K.: Social Choice and Individual Values. Wiley, Chichester (1951)

    MATH  Google Scholar 

  3. Baptiste, P.: Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times. Journal of Scheduling 2, 245–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating throughput in real-time scheduling. SIAM Journal of Computing 31, 331–352 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borodin, A., Nielsen, M., Rackoff, C.: (Incremental) priority algorithms. Algorithmica 37, 295–326 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borodin, A., Boyar, J., Larsen, K.: Priority algorithms for graph optimization problems. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 126–139. Springer, Heidelberg (2005)

    Google Scholar 

  7. Chrobak, M., Durr, C., Jawor, W., Kowalik, L., Kurowski, M.: On scheduling equal length jobs to maximize throughput. To appear in Journal of Scheduling.

    Google Scholar 

  8. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job interval scheduling problem and related scheduling problems. In: Proceedings of 42nd Annual IEEE Symposium of Foundations of Computer Science, pp. 348–356. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  9. Davis, S., Impagliazzo, R.: Models of greedy algorithms for graph problems. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 381–390. ACM Press, New York (2004)

    Google Scholar 

  10. Erlebach, T., Spieksma, F.: Interval selection: Applications, algorithms, and lower bounds. Journal of Algorithms 46, 27–53 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  12. Horn, S.: One-pass algorithms with revocable acceptances for job interval selection. Master’s thesis, University of Toronto (2004)

    Google Scholar 

  13. Ibarra, O., Kim, C.: Fast approximation algorithms for the knapsack and sum of subset problem. Journal of the ACM 22, 463–468 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.: An efficient fully polynomial approximation scheme for the subset-sum problem. Journal of Computer and System Science 66, 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley and Sons, Chichester (1990)

    MATH  Google Scholar 

  17. Moore, J.: An n-job, one machine sequencing algorithm algorithm for minimizing the number of late jobs. Management Science 15, 102–109 (1968)

    Article  MATH  Google Scholar 

  18. Regev, O.: Priority algorithms for makespan minimization in the subset model. Information Processing Letters 84, 153–157 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ye, Y., Borodin, A.: Priority algorithms for the subset-sum problem. Technical Report, University of Toronto (2007), http://www.cs.toronto.edu/~bor

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guohui Lin

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ye, Y., Borodin, A. (2007). Priority Algorithms for the Subset-Sum Problem. In: Lin, G. (eds) Computing and Combinatorics. COCOON 2007. Lecture Notes in Computer Science, vol 4598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73545-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73545-8_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73544-1

  • Online ISBN: 978-3-540-73545-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics