Abstract
If a CSP instance has no solution, it contains a smaller unsolvable subproblem that makes unsolvable the whole problem. When solving such instance, instead of just returning the “no solution” message, it is of interest to return an unsolvable subproblem. The detection of such unsolvable subproblems has many applications: failure explanation, error diagnosis, planning, intelligent backtracking, etc. In this paper, we give a method for extracting a Minimal Unsolvable Subproblem (MUS) from a CSP based on a Forward Checking algorithm with Dynamic Variable Ordering (FC-DVO). We propose an approach that improves existing techniques using a two steps algorithm. In the first step, we detect an unsolvable subproblem selecting a set of constraints, while in the second step we refine this unsolvable subproblem until a MUS is obtained. We provide experimental results that show how our approach improves other approaches based on MAC-DVO algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bailey, J., Stuckey, P.J.: Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Practical Aspects of Declarative Languages. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)
Benchmark problems. http://cpai.ucc.ie/05/Benchmarks.html
Bruni, R.: Approximating minimal unsatisfiable subformulae by means of adaptive core search. Discrete App. Math. Journal, vol. 130, pp. 85–100. Elsevier Science Publishers, BV (2003)
Bruni, R., Sassano, A.: Restoring Satisfiability or Maintaining Unsatisfiability by Finding Small Unsatisfiable Subformulae. In: Bruni, R., Sassano, A. (eds.) SAT 2001 (LICS) 2001 Workshop on Theory and Applications of Satisfiability Testing, Boston, Massachusetts, USA, June 14-15, 2001, pp. 14–15. Elsevier Science Pub., North-Holland, Amsterdam (2001)
Faltings, B., Macho-Gonzalez, S.: Open Constraint Programming. Artificial Intelligence, vol 161, pp. 181–208 (2005)
Freuder, E., Hubbe, P.: Extracting Constraint Satisfaction Subproblems. In: Proc. of the 14th International Joint Conference on Artificial Intelligence. pp. 548–555 (1995)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Research 1, 25–46 (1993)
Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence 14, 263–313 (1980)
Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: ECAI 2006. Proceedings of the 17th European Conference on Artificial Intelligence (2006)
Huang, J.: MUP: a minimal unsatisfiability prover. In: Huang, J. (ed.) ASP-DAC 2005. Proceedings of the 2005 conference on Asia South Pacific design automation, Shanghai, China, pp. 432–437. ACM Press, NewYork (2005)
Java Constraint Library (JCL): http://liawww.epfl.ch/JCL/
Junker, U.: QUICKXPLAIN: Conflict Detection for Arbitrary Constraint Propagation Algorithms. In: IJCAI 2001 Workshop on Modelling and Solving problems with constraints (CONS-1) (2001)
Kar, R.M.: Reducibility among combinatorial problems. Complexity of Computer Computations, pp. 85–103 (1972)
Liffiton, M.H., Andraus, Z.S., Sakallah, K.A.: From Max-SAT to Min-UNSAT: Insights and Applications. Technical Report CSE-TR-506-05 (February 2005)
Liffiton, M.H., Moffitt, M.D., Pollack, M.E., Sakallah, K.A.: Identifying Conflicts in Overconstrained Temporal Problems. In: Proc. IJCAI 2005, pp. 205–211, Edinburgh, Scotland (2005)
Liffiton, M.H., Sakallah, K.A.: On Finding All Minimally Unsatisfiable Subformulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg (2005)
Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a minimally-unsatisfiable subformula extractor. In: DAC 2004. Proceedings of the 41st annual conference on Design automation, pp. 518–523. ACM Press, New York (2004)
Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence 9, 268–299 (1993)
Torrens, M., Weigel, R., Faltings, B.: Java constraint library: Bringing constraints technology on the Internet using the java language. In: Constraints and Agents: Papers from the 1997 AAAI Workshop, Menlo Park, California, pp. 21–25 (1997)
Verfaillie, G., Lemaitre, M., Schiex, T.: Russian Doll Search. In: Proc. of the 13th National Conference on Artificial Intelligence, pp. 181–187 (1996)
Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint satisfaction problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 88–102. Springer, Heidelberg (1995)
Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Macho González, S., Meseguer, P. (2007). Boosting MUS Extraction. In: Miguel, I., Ruml, W. (eds) Abstraction, Reformulation, and Approximation. SARA 2007. Lecture Notes in Computer Science(), vol 4612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73580-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-73580-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73579-3
Online ISBN: 978-3-540-73580-9
eBook Packages: Computer ScienceComputer Science (R0)