Skip to main content

Logical Engineering with Instance-Based Methods

  • Conference paper
Automated Deduction – CADE-21 (CADE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4603))

Included in the following conference series:

Abstract

The term ”instance based methods” (IMs) refers to a certain family of methods for first-order logic theorem proving. IMs share the principle of carrying out proof search by maintaining a set of instances of input clauses and analyzing it for satisfiability until completion. IMs are conceptually essentially different to well established methods like resolution or free-variable analytic tableaux. (See [Pla94] for a comparison of various calculi and strategies, including an instance based method.) Also, IMs exhibit a search space and termination behaviour (in the satisfiable case) different from those methods, which makes them attractive from a practical point of view as a complementary method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baumgartner, P.: Hyper Tableaux — The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  • Baumgartner, P.: FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp. 200–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Baumgartner, P.: A First-Order Logic Davis-Putnam-Logemann-Loveland Procedure. In: Lakemeyer, G., Nebel, B. (eds.) AI in the new Millenium, Morgan Kaufmann, Seattle (2002)

    Google Scholar 

  • Baumgartner, P., Eisinger, N., Furbach, U.: A confluent connection calculus. In: Ganzinger, H. (ed.) Automated Deduction - CADE-16. LNCS (LNAI), vol. 1632, pp. 329–343. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. Journal of Applied Logic (to appear)

    Google Scholar 

  • Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, Springer, Heidelberg (1996)

    Google Scholar 

  • Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. International Journal of Artificial Intelligence Tools 15(1), 21–52 (2006)

    Article  Google Scholar 

  • Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 572–586. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Billon, J.-P.: The Disconnection Method. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 110–126. Springer, Heidelberg (1996)

    Google Scholar 

  • Baumgartner, P., Schmidt, R.: Blocking and other enhancements for bottom-up model generation methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Bry, F., Torge, S.: A Deduction Method Complete for Refutation and Finite Satisfiability. In: Proc. 6th European Workshop on Logics in AI (JELIA). LNCS (LNAI), Springer, Heidelberg (1998)

    Google Scholar 

  • Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) Automated Deduction – CADE-19. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

    Google Scholar 

  • Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis [Nie05], pp. 392–408

    Google Scholar 

  • Bundy, A. (ed.): Automated Deduction - CADE-12. LNCS, vol. 814. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  • Chinlund, T.J., Davis, M., Hinman, P.G., McIlroy, M.D.: Theorem-Proving by Matching. Technical report, Bell Laboratories (1964)

    Google Scholar 

  • Cadoli, M., Mancini, T.: Exploiting functional dependencies in declarative problem specifications. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 628–640. Springer, Heidelberg (2004)

    Google Scholar 

  • Cadoli, M., Mancini, T.: Using a theorem prover for reasoning on constraint problems. In: AI*IA, pp. 38–49 (2005)

    Google Scholar 

  • Chu, H., Plaisted, D.A.: Semantically Guided First-Order Theorem Proving using Hyper-Linking. In: Bundy [Bun94], pp. 192–206

    Google Scholar 

  • Claessen, K., Sörensson, N.: New techniques that improve mace-style finite model building. In: Baader, F. (ed.) Automated Deduction – CADE-19. LNCS (LNAI), vol. 2741, Springer, Heidelberg (2003)

    Google Scholar 

  • Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proceedings of Symposia in Applied Amthematics – Experimental Arithmetic, High Speed Computing and Mathematics, vol. XV, pp. 15–30. American Mathematical Society (1963)

    Google Scholar 

  • Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7) (1962)

    Google Scholar 

  • Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  • de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  • Egly, U., Fermüller, C.G. (eds.): TABLEAUX 2002. LNCS (LNAI), vol. 2381. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  • Fermüller, C., Leitsch, A.: Hyperresolution and automated model building. J. Log. Comput. 6(2), 173–203 (1996)

    Article  MATH  Google Scholar 

  • Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 25, 25th edn., vol. II, pp. 1791–1849. Elsevier, North-Holland (2001)

    Google Scholar 

  • Fermüller, C.G., Pichler, R.: Model representation via contexts and implicit generalizations. In: Nieuwenhuis [Nie05], pp. 409–423

    Google Scholar 

  • Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. Journal of Symbolic Computation (2002)

    Google Scholar 

  • Ganzinger, H., Korovin, K.: New directions in instance-based theorem proving. In: LICS - Logics in Computer Science (2003)

    Google Scholar 

  • Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)

    Google Scholar 

  • Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Hooker, J.N., Rago, G., Chandru, V., Shrivastava, A.: Partial Instantiation Methods for Inference in First Order Logic. Journal of Automated Reasoning 28(4), 371–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobs, S., Waldmann, U.: Comparing instance generation methods for automated reasoning. J. Autom. Reason. 38(1-3), 57–78 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, S.-J., Plaisted, D.: Eliminating Duplicates with the Hyper-Linking Strategy. Journal of Automated Reasoning 9, 25–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Letz, R., Stenz, G.: Proof and Model Generation with Disconnection Tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • Letz, R., Stenz, G.: Integration of Equality Reasoning into the Disconnection Calculus. In: Egly and Fermüller [EF02], pp. 176–190

    Google Scholar 

  • Letz, R., Stenz, G.: The disconnection tableau calculus. J. Autom. Reason. 38(1-3), 79–126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE-9. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)

    Google Scholar 

  • McCune, W.: A davis-putnam program and its application to finite first-order model search: Qusigroup existence problems. Technical report, Argonne National Laboratory (1994)

    Google Scholar 

  • Mesnard, F., Hoarau, S., Maillard, A.: CLP(χ) for automatically proving program properties. J. Log. Program 37(1-3), 77–93 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) International Semantic Web Conference, pp. 549–563. AAAI Press, Stanford (2004)

    Google Scholar 

  • Mitchell, D., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a framework for modelling and solving search problems. Technical Report TR 2006-24 (December 2006)

    Google Scholar 

  • Nieuwenhuis, R. (ed.): Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  • Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  • Ohlbach, H.J., Schmidt, R.A.: Functional translation and second-order frame properties of modal logics. Journal of Logic and Computation 7(5), 581–603 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Peltier, N.: A calculus combining resolution and enumeration for building finite models. Journal of Symbolic Computation 36(1-2), 49–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Peltier, N.: A more efficient tableaux procedure for simultaneous search for refutations and finite models. In: Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 181–195. Springer, Heidelberg (2003)

    Google Scholar 

  • Plaisted, D.A., Lee, S.-J.: Inference by clause matching. In: Ras, Z.W., Zemankova, M. (eds.) Intelligent Systems: State of the Art and Future Directions, pp. 200–235. Ellis Horwood, New York (1990)

    Google Scholar 

  • Plaisted, D.: The Search Efficiency of Theorem Proving Strategies. In: Bundy [Bun94]

    Google Scholar 

  • Plaisted, D.A., Zhu, Y.: Ordered Semantic Hyper Linking. In: Proceedings of Fourteenth National Conference on Artificial Intelligence (AAAI-1997) (1997)

    Google Scholar 

  • Plaisted, D.A., Zhu, Y.: Ordered Semantic Hyper Linking. Journal of Automated Reasoning 25(3), 167–217 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Ranise, S., Tinelli, C.: Satisfiability modulo theories. Trends and Controversies - IEEE Intelligent Systems Magazine 21(6), 71–81 (2006)

    Google Scholar 

  • Schmidt, R.A.: Decidability by resolution for propositional modal logics. J. Autom. Reason. 22(4), 379–396 (1999)

    Article  MATH  Google Scholar 

  • Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Transactions on Computational Logic (to appear)

    Google Scholar 

  • Stenz, G., Letz, R.: Generlized handling of variables in disconnection tableaux. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 289–306. Springer, Heidelberg (2004)

    Google Scholar 

  • Slaney, J.: Finder (finite domain enumerator): Notes and guide. Technical Report TR-ARP-1/92, Australian National University, Automated Reasoning Project, Canberra (1992)

    Google Scholar 

  • Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Stenz, G.: DCTP 1.2 - System Abstract. In: Egly and Fermüller [BF02], pp. 335–340

    Google Scholar 

  • Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  • Zhang, J., Zhang, H.: Sem: a system for enumerating models. In: IJCAI-1995 — Proceedings of the 14thInternational Joint Conference on Artificial Intelligence, Montreal, pp. 298–303 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Pfenning

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumgartner, P. (2007). Logical Engineering with Instance-Based Methods. In: Pfenning, F. (eds) Automated Deduction – CADE-21. CADE 2007. Lecture Notes in Computer Science(), vol 4603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73595-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73595-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73594-6

  • Online ISBN: 978-3-540-73595-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics