Abstract
The term ”instance based methods” (IMs) refers to a certain family of methods for first-order logic theorem proving. IMs share the principle of carrying out proof search by maintaining a set of instances of input clauses and analyzing it for satisfiability until completion. IMs are conceptually essentially different to well established methods like resolution or free-variable analytic tableaux. (See [Pla94] for a comparison of various calculi and strategies, including an instance based method.) Also, IMs exhibit a search space and termination behaviour (in the satisfiable case) different from those methods, which makes them attractive from a practical point of view as a complementary method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baumgartner, P.: Hyper Tableaux — The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998)
Baumgartner, P.: FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp. 200–219. Springer, Heidelberg (2000)
Baumgartner, P.: A First-Order Logic Davis-Putnam-Logemann-Loveland Procedure. In: Lakemeyer, G., Nebel, B. (eds.) AI in the new Millenium, Morgan Kaufmann, Seattle (2002)
Baumgartner, P., Eisinger, N., Furbach, U.: A confluent connection calculus. In: Ganzinger, H. (ed.) Automated Deduction - CADE-16. LNCS (LNAI), vol. 1632, pp. 329–343. Springer, Heidelberg (1999)
Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. Journal of Applied Logic (to appear)
Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, Springer, Heidelberg (1996)
Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. International Journal of Artificial Intelligence Tools 15(1), 21–52 (2006)
Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 572–586. Springer, Heidelberg (2006)
Billon, J.-P.: The Disconnection Method. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 110–126. Springer, Heidelberg (1996)
Baumgartner, P., Schmidt, R.: Blocking and other enhancements for bottom-up model generation methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)
Bry, F., Torge, S.: A Deduction Method Complete for Refutation and Finite Satisfiability. In: Proc. 6th European Workshop on Logics in AI (JELIA). LNCS (LNAI), Springer, Heidelberg (1998)
Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) Automated Deduction – CADE-19. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)
Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis [Nie05], pp. 392–408
Bundy, A. (ed.): Automated Deduction - CADE-12. LNCS, vol. 814. Springer, Heidelberg (1994)
Chinlund, T.J., Davis, M., Hinman, P.G., McIlroy, M.D.: Theorem-Proving by Matching. Technical report, Bell Laboratories (1964)
Cadoli, M., Mancini, T.: Exploiting functional dependencies in declarative problem specifications. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 628–640. Springer, Heidelberg (2004)
Cadoli, M., Mancini, T.: Using a theorem prover for reasoning on constraint problems. In: AI*IA, pp. 38–49 (2005)
Chu, H., Plaisted, D.A.: Semantically Guided First-Order Theorem Proving using Hyper-Linking. In: Bundy [Bun94], pp. 192–206
Claessen, K., Sörensson, N.: New techniques that improve mace-style finite model building. In: Baader, F. (ed.) Automated Deduction – CADE-19. LNCS (LNAI), vol. 2741, Springer, Heidelberg (2003)
Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proceedings of Symposia in Applied Amthematics – Experimental Arithmetic, High Speed Computing and Mathematics, vol. XV, pp. 15–30. American Mathematical Society (1963)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7) (1962)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)
de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)
Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)
Egly, U., Fermüller, C.G. (eds.): TABLEAUX 2002. LNCS (LNAI), vol. 2381. Springer, Heidelberg (2002)
Fermüller, C., Leitsch, A.: Hyperresolution and automated model building. J. Log. Comput. 6(2), 173–203 (1996)
Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 25, 25th edn., vol. II, pp. 1791–1849. Elsevier, North-Holland (2001)
Fermüller, C.G., Pichler, R.: Model representation via contexts and implicit generalizations. In: Nieuwenhuis [Nie05], pp. 409–423
Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. Journal of Symbolic Computation (2002)
Ganzinger, H., Korovin, K.: New directions in instance-based theorem proving. In: LICS - Logics in Computer Science (2003)
Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)
Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, Springer, Heidelberg (2006)
Hooker, J.N., Rago, G., Chandru, V., Shrivastava, A.: Partial Instantiation Methods for Inference in First Order Logic. Journal of Automated Reasoning 28(4), 371–396 (2002)
Jacobs, S., Waldmann, U.: Comparing instance generation methods for automated reasoning. J. Autom. Reason. 38(1-3), 57–78 (2007)
Lee, S.-J., Plaisted, D.: Eliminating Duplicates with the Hyper-Linking Strategy. Journal of Automated Reasoning 9, 25–42 (1992)
Letz, R., Stenz, G.: Proof and Model Generation with Disconnection Tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, Springer, Heidelberg (2001)
Letz, R., Stenz, G.: Integration of Equality Reasoning into the Disconnection Calculus. In: Egly and Fermüller [EF02], pp. 176–190
Letz, R., Stenz, G.: The disconnection tableau calculus. J. Autom. Reason. 38(1-3), 79–126 (2007)
Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE-9. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)
McCune, W.: A davis-putnam program and its application to finite first-order model search: Qusigroup existence problems. Technical report, Argonne National Laboratory (1994)
Mesnard, F., Hoarau, S., Maillard, A.: CLP(χ) for automatically proving program properties. J. Log. Program 37(1-3), 77–93 (1998)
Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) International Semantic Web Conference, pp. 549–563. AAAI Press, Stanford (2004)
Mitchell, D., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a framework for modelling and solving search problems. Technical Report TR 2006-24 (December 2006)
Nieuwenhuis, R. (ed.): Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632. Springer, Heidelberg (2005)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)
Ohlbach, H.J., Schmidt, R.A.: Functional translation and second-order frame properties of modal logics. Journal of Logic and Computation 7(5), 581–603 (1997)
Peltier, N.: A calculus combining resolution and enumeration for building finite models. Journal of Symbolic Computation 36(1-2), 49–77 (2003)
Peltier, N.: A more efficient tableaux procedure for simultaneous search for refutations and finite models. In: Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 181–195. Springer, Heidelberg (2003)
Plaisted, D.A., Lee, S.-J.: Inference by clause matching. In: Ras, Z.W., Zemankova, M. (eds.) Intelligent Systems: State of the Art and Future Directions, pp. 200–235. Ellis Horwood, New York (1990)
Plaisted, D.: The Search Efficiency of Theorem Proving Strategies. In: Bundy [Bun94]
Plaisted, D.A., Zhu, Y.: Ordered Semantic Hyper Linking. In: Proceedings of Fourteenth National Conference on Artificial Intelligence (AAAI-1997) (1997)
Plaisted, D.A., Zhu, Y.: Ordered Semantic Hyper Linking. Journal of Automated Reasoning 25(3), 167–217 (2000)
Ranise, S., Tinelli, C.: Satisfiability modulo theories. Trends and Controversies - IEEE Intelligent Systems Magazine 21(6), 71–81 (2006)
Schmidt, R.A.: Decidability by resolution for propositional modal logics. J. Autom. Reason. 22(4), 379–396 (1999)
Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Transactions on Computational Logic (to appear)
Stenz, G., Letz, R.: Generlized handling of variables in disconnection tableaux. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 289–306. Springer, Heidelberg (2004)
Slaney, J.: Finder (finite domain enumerator): Notes and guide. Technical Report TR-ARP-1/92, Australian National University, Automated Reasoning Project, Canberra (1992)
Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)
Stenz, G.: DCTP 1.2 - System Abstract. In: Egly and Fermüller [BF02], pp. 335–340
Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, Springer, Heidelberg (2002)
Zhang, J., Zhang, H.: Sem: a system for enumerating models. In: IJCAI-1995 — Proceedings of the 14thInternational Joint Conference on Artificial Intelligence, Montreal, pp. 298–303 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baumgartner, P. (2007). Logical Engineering with Instance-Based Methods. In: Pfenning, F. (eds) Automated Deduction – CADE-21. CADE 2007. Lecture Notes in Computer Science(), vol 4603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73595-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-73595-3_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73594-6
Online ISBN: 978-3-540-73595-3
eBook Packages: Computer ScienceComputer Science (R0)