Skip to main content

A Human-Machine Cooperative Approach for Time Series Data Interpretation

  • Conference paper
Artificial Intelligence in Medicine (AIME 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4594))

Included in the following conference series:

  • 1560 Accesses

Abstract

This paper deals with the interpretation of biomedical multivariate time series for extracting typical scenarios. This task is known to be difficult, due to the temporal nature of the data at hand, and to the context-sensitive aspect of data interpretation, which hamper the formulation of a priori knowledge about the kind of patterns to detect and their interrelations. A new way to tackle this problem is proposed, based on a collaborative approach between a human and a machine by means of specific annotations. Two grounding principles, namely autonomy and knowledge discovery, support the co-construction of successive abstraction levels for data interpretation. A multi-agent system is proposed to implement effectively these two principles. Respiratory time series data (Flow, Paw) have been explored with our system for patient/ventilator asynchronies characterization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thille, A., Rodriguez, P., Cabello, B., Lellouche, F., Brochard, L.: Patient-Ventilator Asynchrony During Assisted Mechanical Ventilation. Intens. Care Med. 32(10), 1515–1522 (2006)

    Article  Google Scholar 

  2. Salatian, A., Hunter, J.: Deriving Trends in Historical and Real-Time Continuously Sampled Medical Data. J. Intell. Inf. Syst. 13(1-2), 47–71 (1999)

    Article  Google Scholar 

  3. Shahar, Y.: A Framework for Knowledge-Based Temporal Abstraction. Artif. Intell. 90(1-2), 79–133 (1997)

    Article  MATH  Google Scholar 

  4. Augusto, J.C.: Temporal Reasonning for Decision Support in Medicine. Artif. Intell. Med. 33(2), 1–24 (2005)

    Article  Google Scholar 

  5. Fromont, É., Quiniou, R., Cordier, M.O.: Learning Rules from Multisource Data for Cardiac Monitoring. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 484–493. Springer, Heidelberg (2005)

    Google Scholar 

  6. Guimarães, G., Peter, J.H., Penzel, T., Ultsch, A.: A Method for Automated Temporal Knowledge Acquisition Applied to Sleep-Related Breathing Disorders. Artif. Intell. Med. 23(3), 211–237 (2001)

    Article  Google Scholar 

  7. Silvent, A.S., Dojat, M., Garbay, C.: Multi-Level Temporal Abstraction for Medical Scenarios Construction. Int. J. Adapt. Control. 19(5), 377–394 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zupan, B., Holmes, J., Bellazzi, R.: Knowledge Based Data Analysis and Interpretation. Artif. Intell. Med. 37(1), 163–165 (2006)

    Article  Google Scholar 

  9. Kabanza, F., Bisson, G., Charneau, A., Jang, T.S.: Implementing Tutoring Strategies Into a Patient Simulator for Clinical Reasoning Learning. Artif. Intell. Med. 38(1), 79–96 (2006)

    Article  Google Scholar 

  10. Lee, E., Chan, C., Aalst, J.: Students Assessing their Own Collaborative Knowledge Building. Int. J. of Computer-Supported Collaborative Learning 1(1), 57–87 (2006)

    Article  Google Scholar 

  11. Morik, K., Imhoff, M., Brockhausen, P., Joachims, T., Gather, U.: Knowledge Discovery and Knowledge Validation in Intensive Care. Artif. Intell. Med. 19(3), 225–249 (2000)

    Article  Google Scholar 

  12. Schroeder, L., Bazzan, A.: A Multi-Agent System to Facilitate Knowledge Discovery: An Application to Bioinformatics. In: Proceedings of the Workshop on Bioinformatics and Multiagent Systems (2002)

    Google Scholar 

  13. Bottoni, P., Garbay, C., Lecca, F., Mussio, P., Rizzo, P.: Collaborative Indexing and Retrieval by Annotation: the Case of Artistic Artifacts. In: Proceedings of the 2nd International Workshop on Content-based Multimedia Indexing, pp. 315–322 (2001)

    Google Scholar 

  14. Dousson, C., Duong, T.: Discovering Chronicles with Numerical Time Constraints from Alarm Logs for Monitoring Dynamic Systems. In: Dean, T. (ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 620–626. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Riccardo Bellazzi Ameen Abu-Hanna Jim Hunter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guyet, T., Garbay, C., Dojat, M. (2007). A Human-Machine Cooperative Approach for Time Series Data Interpretation. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds) Artificial Intelligence in Medicine. AIME 2007. Lecture Notes in Computer Science(), vol 4594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73599-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73599-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73598-4

  • Online ISBN: 978-3-540-73599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics