Skip to main content

Machine Learning Techniques for Decision Support in Anesthesia

  • Conference paper
Artificial Intelligence in Medicine (AIME 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4594))

Included in the following conference series:

Abstract

The growing availability of measurement devices in the operating room enables the collection of a huge amount of data about the state of the patient and the doctors’ practice during a surgical operation. This paper explores the possibilities of generating, from these data, decision support rules in order to support the daily anesthesia procedures. In particular, we focus on machine learning techniques to design a decision support tool. The preliminary tests in a simulation setting are promising and show the role of computational intelligence techniques in extracting useful information for anesthesiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cantraine, F., Coussaert, E.: The first object oriented monitor for intravenous anesthesia. Journal of Clinical Monitoring and Computing 16(1), 3–10 (2000)

    Article  Google Scholar 

  2. Bailey, J.M., Haddad, W.M., Hayakawa, T.: Closed-loop control in clinical pharmacology: Paradigms, benefits and challenges. In: Proceedings of the 2004 American Control Conference, pp. 2268–2277 (2004)

    Google Scholar 

  3. Sigl, J.C., Chamoun, N.G.: An introduction to bispectral analysis for the electroencephalogram. Clin Monitor 10, 392–404 (1994)

    Article  Google Scholar 

  4. Gentilini, A., Frei, C.W., Glattfedler, A.H., Morari, M., Sieber, T.J., Wymann, R., Schnider, T.W., Zbinden, A.M.: Multitasked closed-loop control in anesthesia. IEEE Engineering in Medicine and Biology 39–53 (2001)

    Google Scholar 

  5. Bontempi, G., Birattari, M., Bersini, H.: Lazy learning for modeling and control design. International Journal of Control 72(7/8), 643–658 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Söderström, T., Stoica, P.: System Identification. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  7. Myers, R.H.: Classical and Modern Regression with Applications. PWS-KENT, Boston, MA (1990)

    Google Scholar 

  8. Bontempi, G.: Local Learning Techniques for Modeling, Prediction and Control. PhD thesis, IRIDIA- Université Libre de Bruxelles (1999)

    Google Scholar 

  9. Bontempi, G., Birattari, M., Bersini, H.: Lazy learners at work: the lazy learning toolbox. In: Proceeding of the 7th European Congress on Intelligent Techniques and Soft Computing EUFIT 1999 (1999)

    Google Scholar 

  10. Aha, D.W., Bankert, R.L.: A comparative evaluation of sequential feature selection algorithms. Artificial Intelligence and Statistics 5 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Riccardo Bellazzi Ameen Abu-Hanna Jim Hunter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caelen, O., Bontempi, G., Barvais, L. (2007). Machine Learning Techniques for Decision Support in Anesthesia. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds) Artificial Intelligence in Medicine. AIME 2007. Lecture Notes in Computer Science(), vol 4594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73599-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73599-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73598-4

  • Online ISBN: 978-3-540-73599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics