Abstract
The growing availability of measurement devices in the operating room enables the collection of a huge amount of data about the state of the patient and the doctors’ practice during a surgical operation. This paper explores the possibilities of generating, from these data, decision support rules in order to support the daily anesthesia procedures. In particular, we focus on machine learning techniques to design a decision support tool. The preliminary tests in a simulation setting are promising and show the role of computational intelligence techniques in extracting useful information for anesthesiologists.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cantraine, F., Coussaert, E.: The first object oriented monitor for intravenous anesthesia. Journal of Clinical Monitoring and Computing 16(1), 3–10 (2000)
Bailey, J.M., Haddad, W.M., Hayakawa, T.: Closed-loop control in clinical pharmacology: Paradigms, benefits and challenges. In: Proceedings of the 2004 American Control Conference, pp. 2268–2277 (2004)
Sigl, J.C., Chamoun, N.G.: An introduction to bispectral analysis for the electroencephalogram. Clin Monitor 10, 392–404 (1994)
Gentilini, A., Frei, C.W., Glattfedler, A.H., Morari, M., Sieber, T.J., Wymann, R., Schnider, T.W., Zbinden, A.M.: Multitasked closed-loop control in anesthesia. IEEE Engineering in Medicine and Biology 39–53 (2001)
Bontempi, G., Birattari, M., Bersini, H.: Lazy learning for modeling and control design. International Journal of Control 72(7/8), 643–658 (1999)
Söderström, T., Stoica, P.: System Identification. Prentice-Hall, Englewood Cliffs (1989)
Myers, R.H.: Classical and Modern Regression with Applications. PWS-KENT, Boston, MA (1990)
Bontempi, G.: Local Learning Techniques for Modeling, Prediction and Control. PhD thesis, IRIDIA- Université Libre de Bruxelles (1999)
Bontempi, G., Birattari, M., Bersini, H.: Lazy learners at work: the lazy learning toolbox. In: Proceeding of the 7th European Congress on Intelligent Techniques and Soft Computing EUFIT 1999 (1999)
Aha, D.W., Bankert, R.L.: A comparative evaluation of sequential feature selection algorithms. Artificial Intelligence and Statistics 5 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caelen, O., Bontempi, G., Barvais, L. (2007). Machine Learning Techniques for Decision Support in Anesthesia. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds) Artificial Intelligence in Medicine. AIME 2007. Lecture Notes in Computer Science(), vol 4594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73599-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-73599-1_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73598-4
Online ISBN: 978-3-540-73599-1
eBook Packages: Computer ScienceComputer Science (R0)