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Abstract. Security researchers and network operators increasingly rely
on information gathered from honeypots and sensors deployed on dark-
nets, or unused address space, for attack detection. While the attack
traffic gleaned from such deployments has been thoroughly scrutinized,
little attention has been paid to DNS queries targeting these addresses.
In this paper, we introduce the concept of dark DNS, the DNS queries
associated with darknet addresses, and characterize the data collected
from a large operational network by our dark DNS sensor. We discuss
the implications of sensor evasion via DNS reconnaissance and emphasize
the importance of proactive defense when deploying darknet sensors by
properly delegating reverse DNS authority. Finally, we present honeydns,
a tool that complements existing network sensors and low-interaction
honeypots by providing simple DNS services.
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1 Introduction

The emergence of sophisticated malware has led security researchers to develop
innovative tools to study and combat its malicious activities. Honeypots, intru-
sion detection systems, and a multitude of other host and network based sensors
have aided researchers extensively in their endeavors. These sensors provide a
wide range of functionality, from simply responding to network requests, to emu-
lating vulnerable services and operating systems, all the way to simulating entire
virtual network and host topologies. Security researchers and network operators
commonly deploy honeypots and other sensors on dark, or unused, address space
to gather malware, analyze new exploit techniques, and study long-term attack
trends.

To maintain their utility, it is vital that these sensors be resistant to remote
identification and fingerprinting techniques that attackers may employ. As the
arms race between malware authors and researchers continues, it is important to
proactively harden sensor deployments in the face of increasingly sophisticated
evasion and reconnaissance techniques. By performing reconnaissance to map
valuable targets, an attacker can build and share databases of valuable targets,
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while flagging and avoiding monitoring systems and sensors. In this paper we de-
scribe how the lack of appropriate DNS delegation for sensor address space can be
used by malware to identify darknet monitoring systems. Such DNS reconnais-
sance utilizes PTR record DNS queries which resolve IP addresses to hostnames.
While current honeypots and darknet sensors are effective at analyzing traffic
targeted at their addresses, they fail to consider out-of-band probes inquiring
about their addresses, namely PTR DNS queries. We appropriately label these
queries as dark DNS. Dark DNS queries are not received by the darknet sensors
themselves; instead, they are directed at the DNS nameserver that is authorita-
tive for the darknet. The occurrence of such dark DNS traffic can be classified
under several categories: DNS mapping efforts, backscatter, misconfiguration, or
malicious reconnaissance.

In this paper, we measure and characterize dark DNS activity. We obtained
DNS authority over two class B (/16) darknets and directed this dark DNS
traffic to our sensor for collection. We measured three distinct datasets, each
collecting a week’s worth of data: one from passively monitoring the incoming
PTR queries, one from actively responding with a NXDOMAIN (non-existent
domain) error code, and one from actively responding with a valid hostname.
We present the behavioral patterns of dark DNS via these measurements and
provide insight into the origin of such anomalous traffic.

Reverse DNS probing can be an effective technique for evading darknet mon-
itors. Due to the recursive nature of queries and the hierarchical operation of
DNS, an attacker can perform reconnaissance on a target network without send-
ing any probe traffic directly to that network and without revealing the attacker’s
source. These characteristics make DNS a lucrative platform for sophisticated
malware and a viable method for reconnaissance and evasion. We show how this
technique can be used maliciously to evade several large-scale darknet monitor-
ing systems while still maintaining its effectiveness against live hosts.

In order to mitigate the threat posed by this evasive technique, we discuss the
proper methodology for delegating reverse DNS for darknet sensor deployments.
We also present a defensive countermeasure, designed to complement current
honeypot systems, to prevent sensor evasion based on DNS reconnaissance. Our
tool, honeydns, implements a lightweight DNS responder which is able to reply to
PTR queries for large darknets with appropriate records. Honeydns can be easily
used to complement and properly configure a large-scale honeypot deployment.

To summarize, our work has the following contributions. We present the first
detailed study to characterize and illustrate a significant amount of dark DNS
traffic consisting of over 1.48M queries over three weeks. Aside from dark DNS
analysis, our work is the first to highlight the importance of properly configuring
the authoritative DNS servers for darknet monitoring systems to prevent the
use of PTR reconnaissance as an effective evasion vector. Our honeydns tool
provides a lightweight and flexible way to build a more complete darknet sensor
by facilitating valid DNS responses for the darknet and making it appear to
contain valid hosts.
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The rest of this paper is organized as follows: In Section 2, we provide an
introduction to the operation of the Domain Name System and describe common
queries types and response codes. Next, in Section 3, we discuss recent related
work. In Section 4, we discuss our collection and experimentation setup. We then
present a thorough analysis of our experiment results in Section 5. In Section 6,
we discuss the implications of our results, and finally, in Section 7, we summarize
our contributions and conclude.

2 Domain Name System

The Domain Name System (DNS), defined in RFCs 1034 [1] and 1035 [2], is a
hierarchical, distributed database which provides essential name-resolution ser-
vices to Internet applications. In order to perform a DNS query, a resolver will
traverse the DNS hierarchy to locate the appropriate authoritative server that
can answer its query. Given the address of a root nameserver, which resolvers
are typically seeded with, the resolver can query for the address of the next
level authoritative nameserver. By recursively performing this process through
the hierarchical tree, the resolver will eventually reach the nameserver that is
authoritative for the specified query. Once that server is identified, the answer
to the query is retrieved by the resolver, completing its query. The DNS infras-
tructure supports many different query types, of which Address (A) and Pointer
(PTR) are the most common.

Address (A) Records: Address record lookups perform the translation
from a hostname to an IP address and are the most common DNS query per-
formed. When a user connects to a service which is referred to by a domain name,
a DNS query is performed to determine the endpoint IP address to connect to.

Pointer (PTR) Records: PTR records provide the reverse translation of
A records by mapping an IP address to a hostname. The lookup is performed
by transforming the queried IP address into a special, yet legitimate, domain
name. For example, the domain name formed for a query for the IP address
aa.bb.cc.dd is dd.cc.bb.aa.in-addr.arpa. The ”.arpa” portion is a special top-level
domain created specifically for these reverse PTR queries. A PTR query operates
in the same manner as an A query by starting at the root and traversing the
DNS hierarchy. Once the authoritative zone is reached, the authoritative server
will return the hostname associated with the queried IP address. PTR queries
are commonly used by network services such as SSH and SMTP to validate
connecting clients.

Query Responses: For A record query, the DNS server responds with the
appropriate IP address and for a PTR query the server responds with the host-
name associated with the query IP address. Additionally, there are numerous
status codes that are returned for a DNS query, three of the most common ones
are SERVFAIL, NXDOMAIN, and NOERROR. If a resolver is able to determine
the address of an authoritative server, but the server is not responding, the re-
solver will return SERVFAIL. On the other hand, if the authoritative server is
responding but does not possess any records that correspond to the query, it
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will return NXDOMAIN. If all goes well and the authoritative server is able to
answer the resolver, the NOERROR code will be sent. If a darknet sensor is
configured without the accompanying DNS configuration changes, PTR queries
for the darknet would result in NXDOMAIN replies being generated.

3 Related Work

Our work is related to several areas of previous research on DNS and darknets
which we briefly describe here.

DNS has long been a target for attackers due to its critical role in the Internet
infrastructure and its inherent lack of security. One of the malicious uses of
DNS was described in 1990 and demonstrated how attackers could leverage DNS
lookups to subvert system security [3]. In addition, given that the purpose of DNS
is provide information about hosts, it is not surprising that it could be used for
attack reconnaissance. A common way to perform such probing was the use of
a zone transfer [4] to obtain the entire set of hosts that a server is authoritative
for. Many administrators subsequently secured their servers with proper access
controls. As zone transfers are rarely effective anymore, attackers have turned
to tools such as TXDNS [5] to map the namespace of a domain strictly through
brute-force A record queries.

While network and host based intrusion detection have been studied exten-
sively, attack detection by monitoring DNS query behavior is a relatively recent
technique. Malware employing spam services have been detected by their emis-
sion of a large number of MX queries [6]. Botnet activity can be inferred via DNS
query patterns and maintained blacklists [7, 8]. Correlation of DNS activity with
regular IP traffic can even be used to detect malware scanning and zero-day
worm outbreaks [9]. While these techniques have focused on detecting malicious
activity by observing DNS queries for live hosts, in this paper we instead focus
on characterizing DNS activity for unused portions of the IP address space.

In order for darknet sensors to maintain the value and effectiveness, it is crit-
ical that they resist identification and fingerprinting to prevent evasion. Previous
work has demonstrated the ease of detecting the location of general network sen-
sors [10, 11] through active probing. Recent work by Rajab et al. [12] describes
how evasive techniques can be used by malware to detect honeypots by selective
sampling of the IP address space. Discrepancies in the behavior of IP network
stacks can also be exploited for sensor detection, as demonstrated by shown the
Honeyd detector named Winnie [13]. Our proposed honeydns tool provides dark-
net sensor deployments with higher resistance to identification and complements
other darknet configuration tools such as [14].

Our work builds on previous DNS characterization work of both DNS root
servers [15–17] as well as local resolvers [18, 19]. DNS can be used to estimate
network distance between hosts by exploiting a large number of open-resolver
DNS servers [20]. Similar to the AS112 Project [21], which uses separate servers
to answer PTR queries for RFC1918, dynamic DNS updates, and other ambigu-
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ous addresses, our work focuses on measuring DNS behavior in address spaces
with no legitimate live hosts.

4 Methodology

For our experiments we obtained two class B (/16) darknet address blocks and
delegated DNS authority for these subnets to our dark DNS collector. We then
proceeded to gather three datasets for our experiments, collecting a week of
DNS traffic for each dataset. For the first dataset, we passively recorded all
incoming queries to our delegated subnets without any active responses. The
goal of this dataset was to obtain an accurate measure of DNS activity for
these subnets without any external influence. The second dataset was obtained
by repeating the first experiment, but, instead of passively monitoring, we sent
replies to the queries with the NXDOMAIN (non-existent domain) error code.
NXDOMAIN is the error code generated when no resource record is found for a
query. The third dataset was obtained by replying to incoming PTR queries with
a valid hostname response. The format used for this hostname was host-{a-b-c-
d}.merit.edu in response to PTR queries for any IP a.b.c.d within our darknet.
The DNS TTL of the responses was set to zero to ensure resolvers would not
cache our response. The goal of collecting these three distinct datasets is to
examine DNS probe traffic under three common scenarios.

Response Type A/16 B/16 A/16+B/16 Duration
No Response NR A NR B NR TOTAL 7 days
NXDOMAIN Response NX A NX B NX TOTAL 7 days
Valid Response VR A - VR TOTAL 7 days

Table 1. The Measurement Datasets

Table 1 shows our three datasets and the terminology we will use to refer to
them throughout the rest of the paper. The first dataset where the DNS server
sent out no responses to any queries are called NR A and NR B (No Response)
respectively for the two /16 darknets A and B. Similarly, the second one where
the DNS server responded with NXDOMAIN replies are called NX A and NX B.
The third dataset, where we replied with valid responses to PTR queries, is
called VR A (Valid Response). Due to an administrative issue, response dataset
VR B was not captured. Each of the three datasets represents one week of data
collection. We refer to the combined data from both subnets if available as
NR TOTAL, NX TOTAL, and VR TOTAL.

During collection periods, our dark DNS sensor archived each incoming query
in a SQLite database backend for subsequent analysis. An extensive schema was
used to capture various aspects of each DNS query. The information collected
includes IP layer details such as the source IP, identification number, and time-
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to-live (TTL) value, transport layer details such as the source port, and DNS
details such as the type, id, and query.

For the second part of our study, we obtained one day of NetFlow data from a
regional ISP to help identify the feasibility of using PTR scanning to detect live
hosts on the Internet. We extracted only IP addresses from the NetFlow data
where the TCP ACK flag was set. This ensures that SYN scanning or spoofing
does not influence our results. For each of these addresses we performed a query
to determine whether that particular live host had an associated PTR entry.

5 Data Analysis

Next, we describe our analysis of the three datasets illustrating the presence of
suspicious DNS activities in the monitored darknets. Aside from DNS mapping
efforts, there should not be any legitimate DNS traffic for such an unused address
space. We postulate that the observed dark DNS activity falls into the follow-
ing classifications: (1) DNS mapping efforts such as that by Internet Systems
Consortium [22], (2) backscatter [23] due to spoofed darknet traffic triggering
subsequent DNS queries by monitoring systems, (3) misconfiguration, (4) PTR
reconnaissance by malicious entities to identify live hosts for attack targeting.

5.1 Basic Statistics

Dataset Queries Unique Sources Unique Targets Avg Query Rate Max Query Rate
NR A 714K 11.2K 64.1K 353.70 5501
NR B 606K 11.8K 52.2K 300.34 2725

NR Total 1.32M 17.0K 116K 654.8 5553
NX A 57K 8.59K 28.9K 27.56 552
NX B 58K 9.09K 29.4K 28.79 560

NX Total 115K 13.1K 58.4K 57.1 825
VR A 45K 7.45K 24.2K 22.35 321
VR B - - - - -

VR Total 45K 7.45K 24.2K 22.35 321
Table 2. Basic dark DNS query statistics. Query rates are per 5 minute intervals.

Table 2 illustrates the basic statistics of our three datasets. As described
earlier, our first dataset is designed to gather the raw queries that are associated
with the addresses of our delegated darknets. The second dataset shows the
continued query activity despite correct NXDOMAIN responses. By comparing
these two datasets we can establish the primary characteristics of dark DNS
queries. We observe an order of magnitude more queries for the first dataset,
which is due to retries. When a client resolver fails to receive a response for a
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Query Code Query Type Count Percentage
1 A 81 0.0704%
6 SOA 683 0.5937%
12 PTR 114214 99.2846%
15 MX 4 0.0035%
33 SRV 32 0.0278%
255 ANY 23 0.0199%

Table 3. Query Type Distribution for NX Total

query, it will retry several times after a timeout period. Interestingly, the unique
targets probed in the first dataset is more than 88% of all the addresses covered
by the two /16s monitored, indicating the PTR scanning behavior is widespread
throughout the two address blocks.

For the third dataset, in which our DNS responder replies with host-{a-b-c-
d}.merit.edu in response to PTR queries for any IP a.b.c.d within our darknet,
we observe slightly lower query rate compared to the second dataset with NXDO-
MAIN responses. We conjecture this is due to resolvers being satisfied with the
valid replies instead of NXDOMAIN and therefore discontinuing their scanning
activity.

Over the course of our three-week experiment, our darknet DNS sensor re-
ceived over 1.48 million queries. They originate from more than 8000 IP prefixes
and 3900 ASNs. Table 3 shows the distribution of various query type codes ob-
served in the incoming DNS queries for the second dataset. We observed similar
distribution for the other two datasets. The vast majority of these as expected
are PTR queries though we do observe an occasional A record request and even
a few MX queries.

5.2 Query Rate

Figure 1 presents the query rate that is observed via our dark DNS monitor
for the A/16 subnet. The figure shows the number of queries received in 30
minute intervals for the NR A, NX A, and VR A datasets during the course
of our experiments. It shows a fairly high rate of queries over the one week
measurement time period for all three datasets. There are two distinct query
levels visible in the data. The lower rate level represents query rates observed in
the NX A and VR A datasets. These are significantly lower than the query rates
observed in the NR A dataset. The higher rates observed for the NR A dataset
are due to retries by resolvers in the absence of any replies.

The average number of queries observed in the NX A and VR A datasets
over a 5 minute interval is 27.5 and 22.3 respectively while the query rate for
the NR A dataset is an order of magnitude greater at 353.7. The maximum rate
observed is also significantly different depending on whether our server actively
responds to dark DNS queries.
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Fig. 1. Number of Queries per 30 Minute Interval - A/16

Figure 1 shows a couple of interesting features as well. The first is the sporadic
peaks in the query rate forming an upper band observed in the NX A and VR A
datasets. These peaks are roughly a value of 256 above the lower band, or the
size of a /24 subnet, caused by a deliberate scan of that subnet. The second
interesting feature is the significant reduction in the query rate observed in the
NR A dataset around day 4 following a short-lived spike. We will discuss this
particular anomaly in greater detail in Section 5.4.

5.3 Query Targets

In order to better understand the nature of dark DNS queries, we analyzed the
distribution of IP address that these queries were attempting to resolve. For
this analysis we used all three datasets obtained via our collector on the A/16
subnet. For each dataset we computed the number of queries for hosts in each /24
subnet of this address space. A clustering or unusually large number of queries
for a particular target address would indicate a bias in query targets.

Figure 2 shows the resulting graph from our analysis. The x-axis represents
each /24 subnet of our monitored /16 and the y-axis depicts the number of
queries. As we previously observed in Figure 1 of the query rate, the query
distribution for the the VR A and NX A datasets also exhibits a lower band
and a more sparsely populated upper band. Again, the upper band is roughly
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Fig. 2. Query Target IP Address Distribution - A/16

256 queries above the lower band, representing a deliberate scan of a particular
/24 subnet. We will delve deeper in the cause of these swift scan attempts in
Section 5.4.

5.4 Query Sources

One of the most intriguing characteristics of the dark DNS data is the source from
which the queries originate. In this section, we discuss and illustrate important
aspects of the origins of these dark DNS queries.

Top Talkers Table 4 lists the 10 largest contributors to our dark DNS data
measurements. These measurements are based on the NX TOTAL dataset. The
most interesting feature of this data is that a single source IP is responsible for
nearly 30% of the queries. This particular host appears to be participating in a
large scale DNS mapping, which we will discuss in further detail in Section 5.4.

Source Distribution The left side of Figure 3 shows the number of unique
source IP addresses we observed in the NX TOTAL dataset over time. As the
figure is of linear shape, indicating that over time we are continuing to receive
queries from more unique sources that have not queried us before instead of
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Rank Source IP Percentage
1 69.15.35.X 29.0315%
2 156.45.232.X 1.2431%
3 24.93.41.X 0.5537%
4 65.24.7.X 0.4198%
5 200.169.8.X 0.4172%
6 24.92.226.X 0.4085%
7 212.27.54.X 0.3833%
8 212.27.54.X 0.3712%
9 24.25.5.X 0.3694%
10 216.219.254.X 0.3659%

Table 4. Top 10 Sources by Percentage of Total Queries

repeated queries from the same set of hosts. This indicates that it is infeasible
to block such traffic from the network via simple ACLs. However, as this figure
does not show a completely straight line, given fairly constant query rate over
each day, we can conclude that a very small fraction of the total sources are in
fact continuing to send queries to our dark DNS collectors over time.

The right side of Figure 3 shows the percentage of sources as a function of the
percentage of total queries. The figure shows a sharp initial increase indicating
that a small percentage of the sources are contributing to a large percentage of
queries in our NX TOTAL dataset. The increasing width of the boxes indicate
that an increasingly greater percentage of unique sources is needed to account
for each additional 5% of the total queries.
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Autonomous Systems While there are a number of sources sending PTR
queries to our dark DNS sensor, it is helpful to get a high-level view of the
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Rank Query Count (% of total) ASN Name
1 33407 (29%) AS17184 ATL-CBEYOND COMMUNICATIONS
2 4678 (4%) AS7132 SBIS-AS - SBC Internet Service
3 4140 (4%) AS12322 PROXAD AS for Proxad/Free ISP
4 2302 (2%) AS3320 DTAG Deutsche Telekom AG
5 1438 (1%) AS22773 CCINET-2 - Cox Communications
6 1430 (1%) AS20170 MARITZFENTONMO - Maritz Inc.
7 1277 (1%) AS19262 VZGNI-TRANSIT - Verizon Internt
8 903 (1%) AS3215 AS3215 France Telecom - Orange
9 890 (1%) AS3269 ASN-IBSNAZ TELECOM ITALIA
10 861 (1%) AS3352 TELEFONICA-DATA-ESPANA Internet

Table 5. Top 10 Contributing Autonomous Systems by Query Volume

organizations that these IPs belong to. In Tables 5 and 6, we have ranked the
top contributing organizations with their Autonomous System Number (ASN).
Table 5 ranks by the total number of queries received from source IPs owned
by the AS, while Table 6 ranks by the unique number of source IPs. Most of
these networks are well known ISPs offering DSL and Cable modem services,
along with several large ISPs such as Qwest, Deutsche Telekom, and France
Telecom. The top query volume contributor CBEYOND accounts for more than
29% of all queries, indicating highly non-uniform source distribution of dark
DNS traffic. The distribution for unique source IPs contributed by each ASN is
less skewed with SBC accounting for more than 4.5% of all sources observed.
Also, it is noteworthy that both SBC and Deutsche Telekom appear as the top
10 contributing ASNs by query rate as well as by unique sources.

Rank Unique Sources (% of total) ASN Name
1 594 (4.5%) AS7132 SBIS-AS - SBC Internet Service
2 268 (2.0%) AS3320 DTAG Deutsche Telekom AG
3 214 (1.6%) AS7018 ATT-INTERNET4 - AT&T WorldNet
4 204 (1.5%) AS6128 CABLE-NET-1 - Cablevision Systems
5 202 (1.5%) AS4230 Embratel Brazil
6 194 (1.4%) AS5617 TPNET Polish Telecom commerce
7 192 (1.4%) AS209 ASN-QWEST - Qwest
8 190 (1.4%) AS5089 NTL NTL Group Limited
9 174 (1.3%) AS21844 THEPLANET-AS - THE PLANET
10 164 (1.2%) AS577 BACOM - Bell Canada

Table 6. Top 10 Contributing Autonomous Systems by Number of Unique
Sources
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Operating Systems Figure 4 shows the distribution of IP header TTL values
from the PTR queries. The three distinct clusters signify the three classes of
initial TTL values: 64, 128, and 255. As these initial TTL values result from
network stack characteristics of different operating systems, we can estimate
the operating system distribution of the source IPs. Linux/BSD systems set the
initial TTL to 64, Windows systems set it to 128, and Solaris systems set it to
255. Table 7 summarizes the OS distribution percentages observed by our dark
DNS collector.

Operating System Initial TTL Unique Sources Percentage
Linux/BSD 64 10480 72.93%
Windows 128 1043 7.26%

Solaris/Other 255 2846 19.81%
Table 7. Query source OS distribution based on TTL

The vast majority of the resolvers appear to be Linux/BSD based systems,
followed by a modest percentage that may be Solaris based, and finally a small
percentage of Windows based resolvers. This in contrast with the resolver OS
percentages reported in a previous study [17] where, of all the sources querying
the F-root server, 49% were reported to be Linux/BSD based and almost 40%
were reported to be Windows based. It is clear the queries of dark DNS are not
consistent with the behavior expected of a normal DNS system. It is important
to note that the origins of such queries are not necessarily end hosts, but also
resolvers querying on behalf of the end hosts via recursive DNS queries.

Akamai Mapping Akamai is a company that provides a distributed content
delivery network (CDN) to accelerate and cache web content. Their platform
depends on the ability to determine network locality and distance between hosts.
During our experimentation, we noticed that the majority of the top queriers
were from hosts deployed by Akamai. These hosts were verified as belonging to
Akamai via hostname, Internet routing registries, and SSH banner strings. We
hypothesize that Akamai is using PTR querying to supplement their network
locality algorithms is partially confirmed by the DNS-based distance estimation
techniques described in previous work [20].

We also determined that 11 distinct Akamai-deployed hosts are responsible
for the anomalous spike in the query rate in Figure 1 of Section 5.2. Around
day 3 of our NR A dataset, we observed an order-of-magnitude increase which
was abruptly followed by an overall decrease in the query rate. By separating
out the 11 Akamai hosts from the rest of the source hosts, we are able to more
effectively highlight this anomalous behavior.

As shown in Figure 5, the query rate for the Akamai hosts is steady for
the first couple days, then drops off briefly, then skyrockets up to 12000 queries
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Fig. 4. TTL Distribution in PTR query packets

per 30 minutes, then drops off again and is not observed at all for the rest of
the dataset collection. Whether this sequence of events represents a potential
issue with Akamai’s deployments is unknown. More importantly, separating this
anomaly from the rest of our dataset demonstrates the relative consistency that
all other hosts exhibit in their query rate.

Digital Element Mapping In addition to Akamai, another company named
Digital Element is participating in extensive mapping of the dark address space
by utilizing PTR queries. As Digital Element is in the business of providing
content localization and geographically targeted advertising, it is not surprising
that they would use similar techniques as Akamai to determine network distance
and locality derived from DNS. Unlike Akamai’s mapping efforts which originate
from multiple, disperse hosts, Digital Element employs a single host which is
responsible for almost 30% of the observed dark DNS activity. The use of a
single host allows a simple ACL to be deployed for administrators who may
desire to drop all probe traffic originating from Digital Element’s system.

6 Discussion

Detailed analysis in the previous section demonstrates significant DNS activities
for dark address space, originating from diverse operating systems and a large
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number of networks, but with a small number of hosts or networks contribut-
ing to a large percentage of queries. This data provides preliminary evidence
of potentially malicious darknet DNS activities, given the presence of scanning
activities and slightly lower query rate for valid response compared to the no
domain response. In this section, we discuss the implications of PTR reconnais-
sance, verify the assumption that most live hosts have valid PTR records, and
propose a solution to prevent sensor evasion using PTR reconnaissance.

6.1 PTR Reconnaissance

The PTR query type, as previously discussed, is used to perform the mapping
from an IP address to a hostname. Given an address range selected for attack, an
attacker can send a PTR query for each address in the range and note the result.
Operating under the assumption that IP addresses with associated PTR records
are usually live hosts with potentially exploitable services, an attacker can easily
determine whether certain hosts or subnets are worthy of attention. Therefore,
if an attacker sees a valid PTR response with an associated hostname, he can
continue to attack that target with an increased level of confidence. Otherwise,
he can move on to potentially more valuable targets. It is important to note that
these PTR queries will not be seen by the sensors monitoring the traffic of the
dark address space, but instead by the DNS server authoritative for that address
space.
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More importantly, an attacker can mask his identity and source IP address
while performing this reconnaissance. The DNS infrastructure and its resolvers
offer functionality known as recursive querying. If a client requests a recursive
query from a resolver with recursive query enabled, that resolver will perform
all the necessary communication on behalf of that client and simply return the
final result. The other DNS servers involved in the query will have no way of
knowing the attacker’s true identity as they will only be communicating with
the resolver the attacker has chosen. An attacker may choose resolvers located
at his local ISP or, for more anonymity, one of the many open resolvers around
the Internet that accept recursive queries.

6.2 Validating Usefulness of PTR Reconnaissance

To verify our assumption that most live hosts have associated PTR records and
monitored unused address space does not, we performed several measurements.

First, we wanted to determine the distribution of live hosts with PTR records.
We obtained 24 hours worth of NetFlow data (of size 268MB compressed) from
a large regional provider, containing TCP conversations involving a total of
1,234,842 unique IP addresses. By performing a PTR query on each of these
IP addresses, we received a total of 980,835 valid responses, indicating 79.43%
of the hosts have associated PTR records. This high percentage confirms our
assumption and affirms the effectiveness of PTR reconnaissance.

In addition, given that home users on broadband connections are more fre-
quently targeted by malicious activity, PTR scanning techniques would even
more successful against as most ISPs assign PTR records for their addresses.
Table 8 shows the PTR record format template for a number of major broad-
band ISPs obtained from our probes.

We were also able to use PTR reconnaissance to successfully evade several
large-scale, distributed systems that monitor dark address space for malicious
activity. We actively probed one of these systems, which consists of sensors
installed at numerous ISPs around the world monitoring over 17 million routable
IP addresses. Of all the various deployments of this sensor network, only a single
class C subnet (256 addresses) was configured with reverse DNS and responded to
our PTR queries. Utilizing PTR reconnaissance, an attacker would successfully
evade 99.9985% of that sensor’s darknet monitoring.

6.3 Honeydns to Combat PTR Reconnaissance

In order to subvert the effectiveness of sensor evasion via PTR reconnaissance, a
countermeasure must be deployed. The underlying approach is straightforward:
a valid DNS reply must be generated when an attacker performs a PTR query
for a sensor address.

Sending responses for an attacker’s PTR query requires DNS authority for
the targeted address space. Fortunately, as many network sensors have already
been delegated permission to monitor dark IP address space, the additional re-
quirement of gaining DNS delegation is not usually a significant technical nor
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Organization PTR Format
AT&T {ID.detroit-ID-ID}.mi.dial-access.att.net

Belgacom {A.B-C-D}.adsl-dyn.isp.belgacom.be
Bellsouth host-{A-B-C-D}.bhm.bellsouth.net

Blueyonder adsl-{A-B-C-D}.blueyonder.co.uk
Charter {A-B-C-D}.dhcp.bycy.mi.charter.com
Comcast c-{A-B-C-D}.hsd1.ma.comcast.net
Earthlink user-{ID}.cable.earthlink.net

Qwest {A-B-C-D}.albq.qwest.net
Roadrunner cpe-{A-B-C-D}.carolina.res.rr.com

Rogers {ID-ID}.cpe.net.cable.rogers.com
SBC Yahoo adsl-{A-B-C-D}.dsl.rcsntx.sbcglobal.net
Shawcable {ID}.vs.shawcable.net
Speakeasy dsl{A-B-C}.sea1.dsl.speakeasy.net

Telus d{A-B-C-D}.bchsia.telus.net
Tiscali {A-B-C-D}.dsl.ip.tiscali.nl
Verizon pool-{A-B-C-D}.esr.east.verizon.net

XO {A.B.C.D}.ptr.us.xo.ne
Table 8. Common PTR record formats (anonymized)

administrative burden. Once DNS authority has been delegated, it becomes pos-
sible to reply to an attacker’s PTR query with an arbitrary hostname that ap-
pears reasonable for a live host.

While such responses can be provided by existing DNS software packages,
it is desirable to deploy a solution that decreases deployment complexity and
increases functionality and flexibility. DNS servers such as BIND can be cum-
bersome to configure and deploy as an authoritative server, especially when
only a small subset of DNS functionality is required. In addition, many sensor
deployments employ sampling and dynamic topologies which require a flexible
framework that static configuration files cannot provide.

We kept these design goals in mind when implementing honeydns, a simple
yet flexible daemon providing PTR response functionality. Honeydns is writ-
ten in Python and contains less than 200 lines of code. By providing a flexible
response framework, honeydns complements the needs of any low-interaction
honeypot deployment. Honeydns also provides passive monitoring capabilities
to detect and alert an operator when a malicious attacker is employing PTR
reconnaissance techniques.

7 Conclusion

Our work is the first detailed study to characterize DNS queries of darknet
address space, known as dark DNS. We observe a significant amount of DNS
activity to these darknets which are likely due to DNS mapping (e.g., by Aka-
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mai), backscatter queries, misconfiguration, and PTR reconnaissance by attack-
ers. Our work is the first to emphasize the importance of properly configuring
DNS authority for darknet address space to reduce the threat of sensor evasion
by sophisticated malware. Towards this goal, we develop a lightweight tool called
honeydns to provide flexible PTR response functionality in addition to passive
DNS anomaly detection capability. As future work, we plan to explore further
relationships between malicious attack traffic and observed dark DNS activity.
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