Abstract
HealthAgents proposes an agent-based distributed decision support system for brain tumour diagnosis and prognosis which employs Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy techniques and genomic profiles. From a knowledge representation view point the distributed nature and the heterogeneity of the data to be integrated pose a number of challenging problems. This paper shows how Conceptual Graphs can be employed to describe the data sources in the HealthAgents system. Such knowledge representation based description of data allows for reasoning power when querying and for data modularisation capabilities.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arús, C., Celda, B., Dasmahapatra, S., Dupplaw, D., González-Vélez, H., van Huffel, S., Lewis, P., Lluch, M., i Ariet, M.L., Mier, M., Peet, A., Robles, M.: On the design of a web-based decision support system for brain tumour diagnosis using distributed agents. In: WI-IATW 2006. IEEE/WIC/ACM Int Conf. on Web Intelligence & Intelligent Agent Technology, Hong Kong, pp. 208–211. IEEE, Los Alamitos (2006)
Chein, M., Mugnier, M.-L.: Conceptual graphs: Fundamental notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992)
Chein, M., Mugnier, M.-L., Simonet, G.: Nested graphs: A graph-based knowledge representation model with FOL semantics. In: KR 1998. Proc. of the 6th Int’l Conf. on the Principles of Knowl. Repres. and Reasoning, pp. 524–535. Morgan Kaufmann, San Francisco (1998)
Croitoru, M., Compatangelo, E.: Conceptual graph projection: a tree decomposition-based approach. In: Doherty, P., Mylopuolos, Welty, C. (eds.) KR 2006. Proc. of the 10th Int’l Conf. on the Principles of Knowledge Representation and Reasoning, pp. 271–276. AAAI, Stanford, California, USA (2006)
Dau, F.: Query Graphs with Cuts: Mathematical Foundations. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 32–50. Springer, Heidelberg (2004)
Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, London, UK (1984)
Tate, A.R., Underwood, J., Acosta, D.M., Julia-Sape, M., Majos, C., Moreno-Torres, A., Howe, F.A., van der Graaf, M., Lefournier, M.M., Murphy, F., Loosemore, A., Ladroue, C., Wesseling, P., Bosson, J.L., Simonetti, A.W., Gajewicz, W., Calvar, J., Capdevila, A., Wilkins, P., Bell, A.C., Remy, C., Heerschap, A., Watson, D., Griffiths, J.R., Arus, C.: Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed. 19, 411–434 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Croitoru, M., Hu, B., Dashmapatra, S., Lewis, P., Dupplaw, D., Xiao, L. (2007). A Conceptual Graph Description of Medical Data for Brain Tumour Classification. In: Priss, U., Polovina, S., Hill, R. (eds) Conceptual Structures: Knowledge Architectures for Smart Applications. ICCS 2007. Lecture Notes in Computer Science(), vol 4604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73681-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-73681-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73680-6
Online ISBN: 978-3-540-73681-3
eBook Packages: Computer ScienceComputer Science (R0)