Abstract
Knowledge representation (KR) is used to store and retrieve meaningful data. This data is saved using dynamic data structures that are suitable for the style of KR being implemented. The KR allows the system to manipulate the knowledge in the data by using reasoning operations. The data structure, together with the contents of the transformed knowledge, is known as the knowledge base (KB). An algorithm and the associated data structures make up the reasoning operation, and the performance of this operation is dependent on the KB.
In this paper, the basic reasoning operation for a query-answer system, projection, is explored using different theoretical algorithms. Within this discussion, the associated algorithms will be using different KBs for their Conceptual Graph (CG) knowledge representation. The basic projection algorithm defined using the CG representation is looking for a graph morphism of a query graph onto a graph from the KB.
The overall running time for the projection operation is known to be a NP class problem; however, by modifying the algorithm, taking into account the associated KB, the actual time needed for discovering and creating the projection/s can be improved. In fact, a new projection algorithm will be defined that, given a typical query onto a carefully defined KB, presents a running time for the actual projection that only grows with the number of projections present.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lehmann, F. (ed.): Semantics Networks. Pergamon Press, Oxford, England (1992)
Schubert, L.: Extending the expressive power of semantic networks. Artifical Intelligence 7, 163–198 (1976)
Peirce, C.: Manuscripts on existential graphs. Peirce 4, 320–410 (1960)
Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, MA (1984)
Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole (2000)
Chein, M., Mugnier, M.L.: Conceptual graphs: Fundamental notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992)
Baget, J.F., Mugnier, M.L.: Extensions of simple conceptual graphs: the complexity of rules and constraints. Journal of Artificial Intelligence Research (JAIR) 16, 425–465 (2002)
Croitoru, M., Compatangelo, E.: On conceptual graph projection. Technical Report AUCS/TR0403, University of Aberdeen, UK, Department of Computing Science (2004)
Corbett, D.: Reasoning and Unification over Conceptual Graphs. Kluwer Academic/Plenum Plublishers, New York (2003)
Paterson, M., Wegman, M.: Linear unification. J. Comput. Syst. Sci. 16, 158–167 (1978)
Mugnier, M.L., Chein, M.: Polynomial algorithms for projection and matching. In: Pfeiffer, H.D., Nagle, T.E. (eds.) Conceptual Structures: Theory and Implementation. LNCS, vol. 754, pp. 239–251. Springer, Heidelberg (1993)
Messmer, B., Bunke, H.: Efficient subgraph isomorphism detection: A decomposition approach. IEEE Transactions on Knowledge and Data Engineering 12, 307–323 (2000)
Ullman, J.: An algorithm for subgraph isomorphism. J. of the Assoc. for Computing Machinery 23, 31–42 (1976)
Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1969)
Willems, M.: Projection and unification for conceptual graphs. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 278–282. Springer, Heidelberg (1995)
Delugach, H.: CharGer 3.3 - A Conceptual Graph Editor, University of Alabama in Huntsville, Alabama, USA (2004), http://www.cs.uah.edu/delugach/CharGer
Croitoru, M., Compatangelo, E.: A combinatorial approach to conceptual graph projection checking. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, Springer, Heidelberg (2004)
Southey, F., Linders, J.: NOTIO - a Java API for developing CG tools. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 262–271. Springer, Heidelberg (1999)
Delugach, H.: CharGer: A graphical Conceptual Graph editor. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, Springer, Heidelberg (2001)
Benn, D., Corbett, D.: pCG: An implementation of the process mechanism and an extensible CG programming language. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, Springer, Heidelberg (2001)
Polovina, S., Hill, R.: Enhancing the initial requirements capture of multi-agent systems through conceptual graphs. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 439–452. Springer, Heidelberg (2005)
Southey, F.: Notio and Ossa. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, Springer, Heidelberg (2001)
Kabbaj, A., Moulin, B.: An algorithmic definition of cg operations based on a bootstrap step. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, Springer, Heidelberg (2001)
Pfeiffer, H.D.: The Effect of Data Structures Modifications On Algorithms for Reasoning Operations. PhD thesis, New Mexico State University, Las Cruces, NM (2007)
Mugnier, M.L., Leclere, M.: On querying simple conceptual graphs with negation. In: Data and Knowledge Engineering, DKE, Elsevier, Revised version of R.R. LIRMM 05-051 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pfeiffer, H.D., Hartley, R.T. (2007). A Comparison of Different Conceptual Structures Projection Algorithms. In: Priss, U., Polovina, S., Hill, R. (eds) Conceptual Structures: Knowledge Architectures for Smart Applications. ICCS 2007. Lecture Notes in Computer Science(), vol 4604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73681-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-73681-3_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73680-6
Online ISBN: 978-3-540-73681-3
eBook Packages: Computer ScienceComputer Science (R0)