Skip to main content

A Seed-Based Method for Predicting Common Secondary Structures in Unaligned RNA Sequences

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4617))

  • 1531 Accesses

Abstract

The prediction of RNA secondary structure can be facilitated by incorporating with comparative analysis of homologous sequences. However, most of existing comparative approaches are vulnerable to alignment errors. Here we use unaligned sequences to devise a seed-based method for predicting RNA secondary structures. The central idea of our method can be described by three major steps: 1) to detect all possible stems in each sequence using the so-called position matrix, which indicates the paired or unpaired information for each position in the sequence; 2) to select the seeds for RNA folding by finding and assessing the conserved stems across all sequences; 3) to predict RNA secondary structures on the basis of the seeds. We tested our method on data sets composed of RNA sequences with known secondary structures. Our method has average accuracy (measured as sensitivity) 69.93% for singe sequence tests, 72.97% for two-sequence tests, and 79.27% for three-sequence tests. The results show that our method can predict RNA secondary structure with a higher accuracy than Mfold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eddy, S.R.: Non-coding RNA genes and modern RNA world. Nat. Rev. Genet. 2(12), 919–929 (2001)

    Article  Google Scholar 

  2. Huttenhofer, A., Schattner, P., Polacek, N.: Non-coding RNAs:hope or hype? TRENDS in Genetics 21(5), 289–297 (2005)

    Article  Google Scholar 

  3. Furtig, B., et al.: NMR spectroscopy of RNA. Chembiochem. 4(10), 936–962 (2003)

    Article  Google Scholar 

  4. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

  5. Hofacker, I., et al.: Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie 125(2), 167–188 (1994)

    Article  Google Scholar 

  6. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5, 140–157 (2004)

    Article  Google Scholar 

  7. Hofacker, I., Fekete, M., Stadler, P.: Secondary structure prediction for aligned RNA sequences. Journal of Molecular Biology 319(5), 1059–1066 (2002)

    Article  Google Scholar 

  8. Ruan, J., Stormo, G., Zhang, W.: An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20(1), 58–66 (2004)

    Article  Google Scholar 

  9. Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Research 31(13), 3423–3428 (2003)

    Article  Google Scholar 

  10. Altschul, S., et al.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

    Google Scholar 

  11. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31(13), 3406–3415 (2003)

    Article  Google Scholar 

  12. Mathews, D., et al.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology 288(5), 911–940 (1999)

    Article  Google Scholar 

  13. Durbin, R., et al.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University press, Cambridge (1998)

    MATH  Google Scholar 

  14. Sam, G.J., Simon, M., Mhairi, M.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33(Supplement 1), 121–124 (2005)

    Google Scholar 

  15. Bernardo, D.d., Down, T., Hubbard, T.: ddbRNA: detection of conserved secondary structures in multiple alignments. Bioinformatics 19(13), 1606–1611 (2003)

    Article  Google Scholar 

  16. Thompson, J., Higgins, D., Gibson, T.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22), 4673–4680 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vicenç Torra Yasuo Narukawa Yuji Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, X., Luo, Z., Wang, Z., Yuan, B., Shi, J. (2007). A Seed-Based Method for Predicting Common Secondary Structures in Unaligned RNA Sequences. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2007. Lecture Notes in Computer Science(), vol 4617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73729-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73729-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73728-5

  • Online ISBN: 978-3-540-73729-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics