Skip to main content

Extension of the Top-Down Data-Driven Strategy to ILP

  • Conference paper
Book cover Inductive Logic Programming (ILP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4455))

Included in the following conference series:

Abstract

Several upgrades of Attribute-Value learning to Inductive Logic Programming have been proposed and used successfully. However, the Top-Down Data-Driven strategy, popularised by the AQ family, has not yet been transferred to ILP: if the idea of reducing the hypothesis space by covering a seed example is utilised with systems like PROGOL, Aleph or MIO, these systems do not benefit from the associated data-driven specialisation operator. This operator is given an incorrect hypothesis h and a covered negative example e and outputs a set of hypotheses more specific than h and correct wrt e. This refinement operator is very valuable considering heuristic search problems ILP systems may encounter when crossing plateaus in relational search spaces. In this paper, we present the data-driven strategy of AQ, in terms of a lgg-based change of representation of negative examples given a positive seed example, and show how it can be extended to ILP. We evaluate a basic implementation of AQ in the system Propal on a number of benchmark ILP datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alphonse, E.: Macro-opérateurs et Sélection Relationnelle en Programmation Logique Inductive: théorie et algorithmes. PhD thesis, Université Paris-Sud (2003)

    Google Scholar 

  2. Alphonse, E., Osmani, A.: On the connection between the phase transition of the covering test and the learning success rate. In: Proc. 16th Conf. of Inductive Logic Programming (2006)

    Google Scholar 

  3. Alphonse, E., Rouveirol, C.: Lazy propositionalization for relational learning. In: Proc. ECAI 2000, pp. 256–260. IOS Press, Amsterdam (2000)

    Google Scholar 

  4. Blockeel, H., De Raedt, L.: Top-down induction of first order decision trees. Artificial Intelligence 101, 285–297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261–283 (1989)

    Google Scholar 

  6. Cohen, W.W.: Fast effective rule induction. In: Proc. 12th ICML, pp. 115–123. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  7. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

    Google Scholar 

  8. de Givry, S., Zytnicki, M., Heras, F., Larrosa, J.: Existential arc consistency: Getting closer to full arc consistency in weighted CSP. In: Proc. of IJCAI-05 (2005)

    Google Scholar 

  9. Eisinger, N.: Subsumption and connection graphs. In: Proc. of IJCA 1981, pp. 480–486. William Kaufmann (1981)

    Google Scholar 

  10. Esposito, F., Laterza, A., Malerba, D., Semeraro, G.: Refinement of Datalog programs. In: Proc. of the MLnet Familiarization Workshop on ILP for KDD, pp. 73–94 (1996)

    Google Scholar 

  11. Fürnkranz, J.: Pruning methods for rule learning algorithms. In: Proc. 4th Int. Workshop on ILP, pp. 321–336 (1994)

    Google Scholar 

  12. Geibel, P., Wysotzki, F.: A Logical Framework for Graph Theoretical Decision Tree Learning. In: Proc. ILP 1997 (1997)

    Google Scholar 

  13. Giordana, A., Saitta, L., Sebag, M., Botta, M.: Analyzing relational learning in the phase transition framework. In: Proc. ICML, pp. 311–318 (2000)

    Google Scholar 

  14. Haussler, D.: Learning conjunctive concepts in structural domains. Machine Learning 4(1), 7–40 (1989)

    MathSciNet  Google Scholar 

  15. Jagota, A.: Constraint satisfaction and maximum clique. In: Working Notes, AAAI Spring Symposium on AI and NP-hard Problems, pp. 92–97 (1993)

    Google Scholar 

  16. Kaufman, K.A., Michalski, R.S.: Learning from inconsistent and noisy data: The AQ18 approach. In: Proc. of the Eleventh ISMIS, pp. 411–419 (1999)

    Google Scholar 

  17. Kietz, J.-U.: A comparative study of structural most specific generalisations used in machine learning. In: Proc. Third Workshop on ILP, pp. 149–164 (1993)

    Google Scholar 

  18. Kietz, J.-U.: Some computational lower bounds for the computational complexity of inductive logic programmming. In: Proc. 6th ECML, Vienna, Austria (1993)

    Google Scholar 

  19. Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational data mining. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 262–291. Springer, Heidelberg (2001)

    Google Scholar 

  20. Krogel, M.: On Propositionalization for Knowledge Discovery in Relational Databases. PhD thesis, Univ. Magdeburg (2005)

    Google Scholar 

  21. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  22. Michalski, R.S.: A theory and methodology of inductive learning. Machine Learning: An Artificial Intelligence Approach I, 83–134 (1983)

    Google Scholar 

  23. Michalski, R.S., Wojtusiak, J.: Reasoning with meta-values in AQ learning. Technical report, George Mason University (2006)

    Google Scholar 

  24. Muggleton, S.: Inverse entailment and PROGOL. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

  25. Muggleton, S.H., Bain, M., Hayes-Michie, J., Michie, D.: An experimental comparison of human and machine learning formalisms. In: Proc. 6th IWML, San Mateo, CA, pp. 113–118. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  26. Castillo, L.P., Wrobel, S.: On the stability of example-driven learning systems: A case study in multirelational learning. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 321–330. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence, vol. 5, Edinburgh University Press, Edinburgh (1970)

    Google Scholar 

  28. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5(3), 239–266 (1990)

    Google Scholar 

  29. Scheffer, T., Herbrich, R.: Unbiased assessment of learning algorithms. In: Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI 1997), pp. 798–803 (1997)

    Google Scholar 

  30. Scheffer, T., Herbrich, R., Wysotzki, F.: Efficient θ-subsumption based on graph algorithms. In: Inductive Logic Programming. LNCS, vol. 1314, pp. 312–329. Springer, Heidelberg (1997)

    Google Scholar 

  31. Sebag, M.: Delaying the choice of bias: a disjunctive version space approach. In: Proc. 13th ICML, pp. 444–452 (1996)

    Google Scholar 

  32. Sebag, M., Rouveirol, C.: Constraint inductive logic programming. In: Advances In Inductive Logic Programming, pp. 277–294. IOS Press, Amsterdam (1996)

    Google Scholar 

  33. Sebag, M., Rouveirol, C.: Resource-bounded relational reasoning: Induction and deduction through stochastic matching. Machine Learning 38(1/2), 41–62 (2000)

    Article  MATH  Google Scholar 

  34. Smith, B.D., Rosenbloom, P.S.: Incremental non-backtracking focusing: A polynomially bounded generalization algorithm for version spaces. In: Proc. 8th AAAI, pp. 848–853 (1990)

    Google Scholar 

  35. Srinivasan, A.: A learning engine for proposing hypotheses (Aleph) (1999)

    Google Scholar 

  36. Srinivasan, A., Muggleton, S., King, R.D.: Comparing the use of background knowledge by inductive logic programming systems. In: De Raedt, L. (ed.) Proc. of the 5th ILP Workshop, pp. 199–230. Scientific Report, K.U.Leuven (1995)

    Google Scholar 

  37. van der Laag, P.R.J., Nienhuys-Cheng, S-H.: Existence and nonexistence of complete refinement operators. In: Bergadano, F., De Raedt, L. (eds.) Machine Learning: ECML-94. LNCS, vol. 784, pp. 307–322. Springer, Heidelberg (1994)

    Google Scholar 

  38. VanLehn, K.: Efficient specialization of relational concepts. Machine Learning 4, 99–106 (1989)

    Google Scholar 

  39. Winston, P.H.: Learning structural descriptions form examples. In: Winston, P.H. (ed.) The Psychology of Computer Vision, pp. 157–209. McGraw-Hill, New York (1975)

    Google Scholar 

  40. Zucker, J.-D., Ganascia, J.-G.: Selective reformulation of examples in concept learning. In: Proc. 11th ICML, pp. 352–360 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen Muggleton Ramon Otero Alireza Tamaddoni-Nezhad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alphonse, E., Rouveirol, C. (2007). Extension of the Top-Down Data-Driven Strategy to ILP. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2006. Lecture Notes in Computer Science(), vol 4455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73847-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73847-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73846-6

  • Online ISBN: 978-3-540-73847-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics