Abstract
The class of frequent hypergraph mining problems is introduced which includes the frequent graph mining problem class and contains also the frequent itemset mining problem. We study the computational properties of different problems belonging to this class. In particular, besides negative results, we present practically relevant problems that can be solved in incremental-polynomial time. Some of our practical algorithms are obtained by reductions to frequent graph mining and itemset mining problems. Our experimental results in the domain of citation analysis show the potential of the framework on problems that have no natural representation as an ordinary graph.
An early version of this paper appeared in T. Gärtner, G.C. Garriga, and T. Meinl (Eds.), Proc. of the International Workshop on Mining and Learning with Graphs, pages 25–36, ECML/PKDD’06 workshop proceedings, Berlin, Germany, 2006.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)
Berge, C.: Hypergraphs. North Holland Mathematical Library, vol. 445. Elsevier, Amsterdam (1989)
Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual bounded hypergraphs: A survey. In: Proc. of the 2nd SIAM Conference on Data Mining, pp. 87–98 (2002)
Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequent subtree mining–an overview. Fundamenta Informaticae 66, 161–198 (2005)
Dehaspe, L., Toivonen, H.: Discovery of frequent DATALOG patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)
Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)
Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, New York (2002)
Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)
Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)
Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM 30(3), 514–550 (1983)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to NP-Completeness. Freeman, San Francisco, CA (1979)
Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm, R.S.: Discovering all most specific sentences. ACM Transactions on Database Systems 28(2), 140–174 (2003)
Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. In: Proc. of the 12th ACM SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 197–206. ACM Press, New York (2006)
Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)
Nijssen, S., Kok, J.N.: Efficient frequent query discovery in FARMER. In: Proc. of the 17th International Joint Conference on Artificial Intelligence, pp. 891–896. Morgan Kaufmann, San Francisco (2001)
Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a difference. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 647–652. ACM Press, New York (2004)
Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 721–724. IEEE Computer Society Press, Los Alamitos (2002)
Yu, C.T., Ozsoyoglu, M.Z.: An algorithm for tree-query membership of a distributed query. In: Proceedings of Computer Software and Applications Conference, pp. 306–312. IEEE Computer Society Press, Los Alamitos (1979)
Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the 8th ACM SIGKDD International Conference, pp. 71–80. ACM Press, New York (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Horváth, T., Bringmann, B., De Raedt, L. (2007). Frequent Hypergraph Mining. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2006. Lecture Notes in Computer Science(), vol 4455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73847-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-73847-3_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73846-6
Online ISBN: 978-3-540-73847-3
eBook Packages: Computer ScienceComputer Science (R0)