Skip to main content

Frequent Hypergraph Mining

  • Conference paper
Inductive Logic Programming (ILP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4455))

Included in the following conference series:

  • 617 Accesses

Abstract

The class of frequent hypergraph mining problems is introduced which includes the frequent graph mining problem class and contains also the frequent itemset mining problem. We study the computational properties of different problems belonging to this class. In particular, besides negative results, we present practically relevant problems that can be solved in incremental-polynomial time. Some of our practical algorithms are obtained by reductions to frequent graph mining and itemset mining problems. Our experimental results in the domain of citation analysis show the potential of the framework on problems that have no natural representation as an ordinary graph.

An early version of this paper appeared in T. Gärtner, G.C. Garriga, and T. Meinl (Eds.), Proc. of the International Workshop on Mining and Learning with Graphs, pages 25–36, ECML/PKDD’06 workshop proceedings, Berlin, Germany, 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)

    Google Scholar 

  2. Berge, C.: Hypergraphs. North Holland Mathematical Library, vol. 445. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  3. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual bounded hypergraphs: A survey. In: Proc. of the 2nd SIAM Conference on Data Mining, pp. 87–98 (2002)

    Google Scholar 

  4. Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequent subtree mining–an overview. Fundamenta Informaticae 66, 161–198 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Dehaspe, L., Toivonen, H.: Discovery of frequent DATALOG patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)

    Article  Google Scholar 

  6. Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  7. Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, New York (2002)

    Google Scholar 

  8. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  9. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM 30(3), 514–550 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to NP-Completeness. Freeman, San Francisco, CA (1979)

    MATH  Google Scholar 

  12. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm, R.S.: Discovering all most specific sentences. ACM Transactions on Database Systems 28(2), 140–174 (2003)

    Article  Google Scholar 

  13. Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. In: Proc. of the 12th ACM SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 197–206. ACM Press, New York (2006)

    Chapter  Google Scholar 

  14. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

    Article  Google Scholar 

  16. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)

    Article  Google Scholar 

  17. Nijssen, S., Kok, J.N.: Efficient frequent query discovery in FARMER. In: Proc. of the 17th International Joint Conference on Artificial Intelligence, pp. 891–896. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  18. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a difference. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 647–652. ACM Press, New York (2004)

    Chapter  Google Scholar 

  19. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 721–724. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  20. Yu, C.T., Ozsoyoglu, M.Z.: An algorithm for tree-query membership of a distributed query. In: Proceedings of Computer Software and Applications Conference, pp. 306–312. IEEE Computer Society Press, Los Alamitos (1979)

    Google Scholar 

  21. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the 8th ACM SIGKDD International Conference, pp. 71–80. ACM Press, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen Muggleton Ramon Otero Alireza Tamaddoni-Nezhad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horváth, T., Bringmann, B., De Raedt, L. (2007). Frequent Hypergraph Mining. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2006. Lecture Notes in Computer Science(), vol 4455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73847-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73847-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73846-6

  • Online ISBN: 978-3-540-73847-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics