Abstract
This paper surveys first-order probabilistic languages (FOPLs), which combine the expressive power of first-order logic with a probabilistic treatment of uncertainty. We provide a taxonomy that helps make sense of the profusion of FOPLs that have been proposed over the past fifteen years. We also emphasize the importance of representing uncertainty not just about the attributes and relations of a fixed set of objects, but also about what objects exist. This leads us to Bayesian logic, or BLOG, a language for defining probabilistic models with unknown objects. We give a brief overview of BLOG syntax and semantics, and emphasize some of the design decisions that distinguish it from other languages. Finally, we consider the challenge of constructing FOPL models automatically from data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Elidan, G., Friedman, N.: Learning hidden variable networks: The information bottleneck approach. JMLR 6, 81–127 (2005)
Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical Bayesian networks and their relation to other probabilistic logical models. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, Springer, Heidelberg (2005)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proc. 16th IJCAI, pp. 1300–1307 (1999)
Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of relational structure. In: Proc. 18th ICML, pp. 170–177 (2001)
Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)
Heckerman, D., Meek, C., Koller, D.: Probabilistic models for relational data. Technical Report MSR-TR-2004-30, Microsoft Research (2004)
Jaeger, M.: Relational Bayesian networks. In: Proc. 13th UAI, pp. 266–273 (1997)
Kersting, K., Raedt, L.D.: Adaptive Bayesian logic programs. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, Springer, Heidelberg (2001)
Kok, S., Domingos, P.: Learning the structure of Markov logic networks. In: Proc. 22nd ICML, pp. 441–448 (2005)
Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proc. 15th AAAI, pp. 580–587 (1998)
Laskey, K.B., da Costa, P.C.G.: Of starships and Klingons: First-order Bayesian logic for the 23rd century. In: Proc. 21st UAI, pp. 346–353 (2005)
Lukasiewicz, T., Kern–Isberner, G.: Probabilistic logic programming under maximum entropy. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 279–292. Springer, Heidelberg (1999)
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Probabilistic models with unknown objects. In: Proc. 19th IJCAI (2005)
Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D.L., Kolobov, A.: Approximate inference for infinite contingent Bayesian networks. In: Proc. 10th AISTATS (2005)
Milch, B., Russell, S.: General-purpose MCMC inference over relational structures. In: Proc. 22nd UAI, pp. 349–358 (2006)
Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolution. In: Proc. 5th ICML, pp. 339–352 (1988)
Muggleton, S.H.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)
Muggleton, S.H.: Learning structure and parameters of stochastic logic programs. Electronic Trans. on AI 6 (2002)
J.,, Neville, D.J.: Dependency networks for relational data. In: Proc. 4th IEEE Int’l Conf. on Data Mining, IEEE Computer Society Press, Los Alamitos (2004)
Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees. In: Proc. 9th KDD (2003)
Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992)
Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Comp. Sci. 171(1–2), 147–177 (1997)
Otero, R., Muggleton, S.: On McCarthy’s appearance and reality problem. In: ILP 2006: Short Papers (2006)
Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty and citation matching. In: NIPS 15, MIT Press, Cambridge, MA (2003)
Perlich, C., Provost, F.: Aggregation-based feature invention and relational concept classes. In: Proc. 9th KDD (2003)
Pfeffer, A.: IBAL: A probabilistic rational programming language. In: Proc. 17th IJCAI (2001)
Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)
Poole, D.: The Independent Choice Logic for modelling multiple agents under uncertainty. Artificial Intelligence 94(1–2), 5–56 (1997)
Popescul, A., Ungar, L.H.: Cluster-based concept invention for statistical relational learning. In: Proc. 10th KDD (2004)
Popescul, A., Ungar, L.H., Lawrence, S., Pennock, D.M.: Statistical relational learning for document mining. In: Proc. 3rd IEEE Int’l Conf. on Data Mining, pp. 275–282. IEEE Computer Society Press, Los Alamitos (2003)
Puech, A., Muggleton, S.: A comparison of stochastic logic programs and Bayesian logic programs. In: IJCAI Workshop on Learning Statistical Models from Relational Data (2003)
Revoredo, V.K., Paes, A., Zaverucha, G., Costa, S.: Combining predicate invention and revision of probabilistic FOL theories. In: ILP 2006: Short Papers (2006)
Richardson, M., Domingos, P.: Markov logic networks. MLJ 62, 107–136 (2006)
Sato, T., Kameya, Y.: PRISM: A symbolic–statistical modeling language. In: Proc. 15th IJCAI, pp. 1330–1335 (1997)
Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic–statistical modeling. JAIR 15, 391–454 (2001)
Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proc. 18th UAI, pp. 485–492 (2002)
Thomas, A., Spiegelhalter, D., Gilks, W.: BUGS: A program to perform Bayesian inference using Gibbs sampling. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics 4, Oxford Univ. Press, Oxford (1992)
Van Assche, A., Vens, C., Blockeel, H., Džeroski, S.: First order random forests: Learning relational classifiers with complex aggregates. MLJ 64, 149–182 (2006)
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Milch, B., Russell, S. (2007). First-Order Probabilistic Languages: Into the Unknown. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2006. Lecture Notes in Computer Science(), vol 4455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73847-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-73847-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73846-6
Online ISBN: 978-3-540-73847-3
eBook Packages: Computer ScienceComputer Science (R0)