Skip to main content

Integrating Domain Knowledge in Equation Discovery

  • Chapter
Computational Discovery of Scientific Knowledge

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4660))

Abstract

In this chapter, we focus on the equation discovery task, i.e., the task of inducing models based on algebraic and ordinary differential equations from measured and observed data. We propose a methodology for integrating domain knowledge in the process of equation discovery. The proposed methodology transforms the available domain knowledge to a grammar specifying the space of candidate equation-based models. We show here how various aspects of knowledge about modeling dynamic systems in a particular domain of interest can be transformed to grammars. Thereafter, the equation discovery method Lagramge can search through the space of models specified by the grammar and find ones that fit measured data well. We illustrate the utility of the proposed methodology on three modeling tasks from the domain of Environmental sciences. All three tasks involve establishing models of real-world systems from noisy measurement data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendoricchio, G., Coffaro, G., DeMarchi, C.: A trophic model for Ulva Rigida in the Lagoon of Venice. Ecological Modelling 75/76, 485–496 (1994)

    Article  Google Scholar 

  • Bunch, D.S., Gay, D.M., Welsch, R.E.: Algorithm 717; subroutines for maximum likelihood and quasi-likelihood estimation of parameters in nonlinear regression models. ACM Transactions on Mathematical Software 19, 109–130 (1993)

    Article  MATH  Google Scholar 

  • Chomsky, N.: Three models for the description of language. IRE Transactions on Information Theory 2, 113–124 (1956)

    Article  Google Scholar 

  • Coffaro, G., Carrer, G., Bendoricchio, G.: Model for Ulva Rigida growth in the Lagoon of Venice (Technical Report). University of Padova, Padova, Italy. UNESCO MURST Project: Venice Lagoon Ecosystem (1993)

    Google Scholar 

  • Džeroski, S., Todorovski, L.: Discovering dynamics: from inductive logic programming to machine discovery. Journal of Intelligent Information Systems 4, 89–108 (1995)

    Article  Google Scholar 

  • Falkenheiner, B., Forbus, K.D.: Compositional modeling: Finding the right model for the job. Artificial Intelligence 51, 95–143 (1991)

    Article  Google Scholar 

  • Forbus, K.D.: Qulitative process theory. Artificial Intelligence 24, 85–168 (1984)

    Article  Google Scholar 

  • Giordano, F.R., Weir, M.D., Fox, W.P.: A first course in mathematical modeling. 2nd edn. Brooks/Cole Publishing Company, Pacific Grove (1997)

    Google Scholar 

  • Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  • Kokar, M.M.: Determining arguments of invariant functional descriptions. Machine Learning 4, 403–422 (1986)

    Google Scholar 

  • Kompare, B., Džeroski, S.: Getting more out of data: automated modelling of algal growth with machine learning. In: Proceedings of the International symposium on coastal ocean space utilisation, Yokohama, Japan, pp. 209–220 (1995)

    Google Scholar 

  • Križman, V.: Avtomatsko odkrivanje strukture modelov dinamičnih sistemov. Doctoral dissertation, Faculty of computer and information science, University of Ljubljana, Ljubljana, Slovenia. In Slovene (1998)

    Google Scholar 

  • Langley, P., Sanchez, J., Todorovski, L., Džeroski, S.: Inducing process models from continuous data. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 347–354. Morgan Kaufmann, Sidney, Australia (2002)

    Google Scholar 

  • Langley, P., Simon, H., Bradshaw, G.: Heuristics for empirical discovery. In: Computational models of learning, pp. 21–54. Springer, Heidelberg (1987)

    Google Scholar 

  • Langley, P., Żytkow, J.: Data-driven approaches to empirical discovery. Artificial Intelligence 40, 283–312 (1989)

    Article  Google Scholar 

  • Lavrač, N., Džeroski, S.: Inductive logic programming: Techniques and applications. Ellis Horwood, Chichester (1994), available for download at http://www-ai.ijs.si/SasoDzeroski/ILPBook/

  • Mitchell, T.M.: The need for biases in learning generalizations. In: Readings in machine learning, pp. 184–191. Morgan Kaufmann, San Mateo, CA (1991)

    Google Scholar 

  • Murray, J.D.: Mathematical biology, 2nd corrected edn. Springer, Heidelberg (1993)

    Google Scholar 

  • Nédellec, C., Rouveirol, C., Adé, H., Bergadano, F., Tausend, B.: Declarative bias in ILP. In: Raedt, L.D. (ed.) Advances in inductive logic programming, pp. 82–103. IOS Press, Amsterdam, The Netherlands (1996)

    Google Scholar 

  • Ourston, D., Mooney, R.J.: Theory refinement combining analytical and empirical methods. Artificial Intelligence 66, 273–309 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Pazzani, M., Kibler, D.: The utility of background knowledge in inductive learning. Machine Learning 9, 57–94 (1992)

    Google Scholar 

  • Pazzani, M.J., Mani, S., Shankle, W.R.: Acceptance of rules generated by machine learning among medical experts. Methods of Information in Medicine 40, 380–385 (2001)

    Google Scholar 

  • Potter, C.S., Klooster, S.A.: Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to change in vegetation quality and biomass allocation. Tellus 49B, 1–17 (1997)

    Google Scholar 

  • Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  • Robertson, D., Bundy, A., Muetzelfield, R., Haggith, M., Uschold, M.: Eco-logic: logic-based approaches to ecological modelling. MIT Press, Cambridge (1991)

    Google Scholar 

  • Salles, P., Bredeweg, B.: Qualitative reasoning about population and community ecology. AI Magazine 24, 77–90 (2003)

    Google Scholar 

  • Todorovski, L.: Using domain knowledge for automated modeling of dynamic systems with equation discovery. Doctoral dissertation, Faculty of computer and information science, University of Ljubljana, Slovenia (2003)

    Google Scholar 

  • Todorovski, L., Džeroski, S.: Declarative bias in equation discovery. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 376–384. Morgan Kaufmann, San Mateo (1997)

    Google Scholar 

  • Todorovski, L., Džeroski, S.: Theory revision in equation discovery. In: Proceedings of the Fourth International Conference on Discovery Science, pp. 389–400. Springer, Heidelberg (2001a)

    Google Scholar 

  • Todorovski, L., Džeroski, S.: Using domain knowledge on population dynamics modeling for equation discovery. In: Proceedings of the Twelfth European Conference on Machine Learning, pp. 478–490. Springer, Heidelberg (2001b)

    Google Scholar 

  • Todorovski, L., Džeroski, S., Kompare, B.: Modelling and prediction of phytoplankton growth with equation discovery. Ecological Modelling 113, 71–81 (1998)

    Article  Google Scholar 

  • Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artificial Intelligence 70, 119–165 (1994)

    Article  MATH  Google Scholar 

  • Utgoff, P.E.: Shift of bias for inductive concept learning. In: Machine learning: An artificial intelligence approach — vol. 2, pp. 107–148. Morgan Kaufmann, San Mateo, CA (1986)

    Google Scholar 

  • Voit, E.O.: Computational analysis of biochemical systems. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  • Washio, T., Motoda, H.: Discovering admissible models of complex systems based on scale-types and identity constraints. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 810–817. Morgan Kaufmann, San Mateo, CA (1997)

    Google Scholar 

  • Whigham, P.A., Recknagel, F.: Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms. Ecological Modelling 146, 243–251 (2001)

    Article  Google Scholar 

  • Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1, 270–280 (1989)

    Article  Google Scholar 

  • Wrobel, S.: First order theory refinement. In: Raedt, L.D. (ed.) Advances in inductive logic programming, pp. 14–33. IOS Press, Amsterdam, The Netherlands (1996)

    Google Scholar 

  • Zembowicz, R., Żytkow, J.M.: Discovery of equations: Experimental evaluation of convergence. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 70–75. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sašo Džeroski Ljupčo Todorovski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Todorovski, L., Džeroski, S. (2007). Integrating Domain Knowledge in Equation Discovery. In: Džeroski, S., Todorovski, L. (eds) Computational Discovery of Scientific Knowledge. Lecture Notes in Computer Science(), vol 4660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73920-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73920-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73919-7

  • Online ISBN: 978-3-540-73920-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics