Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4660))

Abstract

Research on the computational discovery of numeric equations has focused on constructing laws from scratch, whereas work on theory revision has emphasized qualitative knowledge. In this chapter, we describe an approach to improving scientific models that are cast as sets of equations. We review one such model for aspects of the Earth ecosystem, then recount its application to revising parameter values, intrinsic properties, and functional forms, in each case achieving reduction in error on Earth science data while retaining the communicability of the original model. After this, we consider earlier work on computational scientific discovery and theory revision, then close with suggestions for future research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Chown, E., Dietterich, T.G.: A divide and conquer approach to learning from prior knowledge. In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, pp. 143–150 (2000)

    Google Scholar 

  • Durbin, R., Rumelhart, D.E.: Product units: A computationally powerful and biologically plausible extension. Neural Computation 1, 133–142 (1989)

    Article  Google Scholar 

  • Kokar, M.M.: Determining arguments of invariant functional descriptions. Machine Learning 1, 403–422 (1986)

    Google Scholar 

  • Langley, P.: Rediscovering physics with Bacon.3. In: Proceedings of the Sixth International Joint Conference on Artificial Intelligence, Tokyo, Japan, pp. 505–507 (1979)

    Google Scholar 

  • Langley, P.: The computer-aided discovery of scientific knowledge. In: Proceedings of the First International Conference on Discovery Science. Fukuoka, Japan (1998)

    Google Scholar 

  • Langley, P., Simon, H.A., Bradshaw, G.L., Żytkow, J.M.: Scientific discovery: Computational explorations of the creative processes. MIT Press, Cambridge, MA (1987)

    Google Scholar 

  • Lenat, D.B.: Automated theory formation in mathematics. In: Proceedings of the Fifth International Joint Conference on Artificial Intelligence, Cambridge, MA, pp. 833–842 (1977)

    Google Scholar 

  • Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., Lederberg, J.: Applications of artificial intelligence for organic chemistry: The Dendral project. McGraw-Hill, New York (1980)

    Google Scholar 

  • Ourston, D., Mooney, R.: Changing the rules: A comprehensive approach to theory refinement. In: Proceedings of the Eighth National Conference on Artificial Intelligence, Boston, MA, pp. 815–820 (1990)

    Google Scholar 

  • Potter, C.S., Klooster, S.A.: Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to change in vegetation quality and biomass allocation. Tellus 49B, 1–17 (1997)

    Google Scholar 

  • Potter, C.S., Klooster, S.A.: Interannual variability in soil trace gas (CO2, N2O, NO) fluxes and analysis of controllers on regional to global scales. Global Biogeochemical Cycles 12, 621–635 (1998)

    Article  Google Scholar 

  • Saito, K., Nakano, R.: Law discovery using neural networks. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan, pp. 1078–1083 (1997)

    Google Scholar 

  • Saito, K., Nakano, R.: Discovery of nominally conditioned polynomials using neural networks, vector quantizers and decision trees. In: Proceedings of the Third International Conference on Discovery Science, Kyoto, Japan, pp. 325–329 (2000)

    Google Scholar 

  • Schwabacher, M., Langley, P.: Discovering communicable scientific knowledge from spatio-temporal data. In: Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, pp. 489–496 (2001)

    Google Scholar 

  • Todorovski, L., Džeroski, S.: Declarative bias in equation discovery. In: Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, TN, pp. 376–384 (1997)

    Google Scholar 

  • Todorovski, L., Dzeroski, S.: Theory revision in equation discovery. In: Proceedings of the Fourth International Conference on Discovery Science, Washington, D.C., pp. 389–400 (2001)

    Google Scholar 

  • Towell, G.: Symbolic knowledge and neural networks: Insertion, refinement, and extraction. Doctoral dissertation, Computer Sciences Department, University of Wisconsin, Madison (1991)

    Google Scholar 

  • Washio, T., Motoda, H.: Discovering admissible simultaneous equations of large scale systems. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence, Madison, WI, pp. 189–196 (1998)

    Google Scholar 

  • Żytkow, J.M., Zhu, J., Hussam, A.: Automated discovery in a chemistry laboratory. In: Proceedings of the Eighth National Conference on Artificial Intelligence, Boston, MA, pp. 889–894 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sašo Džeroski Ljupčo Todorovski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saito, K., Langley, P. (2007). Quantitative Revision of Scientific Models. In: Džeroski, S., Todorovski, L. (eds) Computational Discovery of Scientific Knowledge. Lecture Notes in Computer Science(), vol 4660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73920-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73920-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73919-7

  • Online ISBN: 978-3-540-73920-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics