Skip to main content

Phase Transition and the Computational Complexity of Generating r-Contiguous Detectors

  • Conference paper
Artificial Immune Systems (ICARIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4628))

Included in the following conference series:

Abstract

The problem of generating r-contiguous detectors in negative selection can be transformed in the problem of finding assignment sets for a Boolean formula in k-CNF. Knowing this crucial fact enables us to explore the computational complexity and the feasibility of finding detectors with respect to the number of self bit strings \(|\mathcal{S}|\), the bit string length l and matching length r. It turns out that finding detectors is hardest in the phase transition region, which is characterized by certain combinations of parameters \(|\mathcal{S}|,l\) and r. This insight is derived by investigating the r-contiguous matching probability in a random search approach and by using the equivalent k-CNF problem formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Percus, J.K., Percus, O.E., Perelson, A.S.: Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination. Proceedings of National Academy of Sciences USA 90, 1691–1695 (1993)

    Article  Google Scholar 

  2. D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change detection: algorithms, analysis, and implications. In: Proceedings of the Symposium on Research in Security and Privacy, pp. 110–119. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  3. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the Symposium on Research in Security and Privacy, pp. 202–212. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  4. Ayara, M., Timmis, J., de Lemos, R., de Castro, L.N., Duncan, R.: Negative selection: How to generate detectors. In: ICARIS 2002. Proceedings of the 1nd International Conference on Artificial Immune Systems, pp. 89–98. University of Kent at Canterbury Printing Unit (2002)

    Google Scholar 

  5. Stibor, T., Timmis, J., Eckert, C.: On the appropriateness of negative selection defined over hamming shape-space as a network intrusion detection system. In: CEC 2005. Proceedings of Congress On Evolutionary Computation, pp. 995–1002. IEEE Press, New York (2005)

    Google Scholar 

  6. Stibor, T., Timmis, J., Eckert, C.: The link between r-contiguous detectors and k-CNF satisfiability. In: CEC 2006. Proceedings of Congress On Evolutionary Computation, pp. 491–498. IEEE Press, New York (2006)

    Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and its Applications, 3rd edn., vol. 1. John Wiley & Sons, West Sussex, England (1968)

    MATH  Google Scholar 

  8. Ranang, M.T.: An artificial immune system approach to preserving security in computer networks. Master’s thesis, Norges Teknisk-Naturvitenskapelige Universitet (2002)

    Google Scholar 

  9. Uspensky, J.V.: Introduction to Mathematical Probability. McGraw-Hill, New York (1937)

    MATH  Google Scholar 

  10. Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems: A problem-oriented perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 229–241. Springer, Heidelberg (2003)

    Google Scholar 

  11. González, F., Dasgupta, D., Gómez, J.: The effect of binary matching rules in negative selection. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 195–206. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Stibor, T., Timmis, J., Eckert, C.: Generalization regions in hamming negative selection. In: Intelligent Information Processing and Web Mining. Advances in Soft Computing, pp. 447–456. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  14. Kullmann, O.: The SAT, solver competition on random instances. Journal on Satisfiability, Boolean Modeling and Computation 2, 61–102 (2006)

    Google Scholar 

  15. Freeman, J.W.: Hard random 3-SAT problems and the Davis-Putnam procedure. Artificial Intelligence 81(1-2), 183–198 (1996)

    Article  MathSciNet  Google Scholar 

  16. Ouyang, M.: How good are branching rules in DPLL. Discrete Applied Mathematics 89(1-3), 281–286 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  18. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM (JACM) 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the 11th European Conference on Artificial Intelligence, pp. 105–109. John Wiley & Sons, West Sussex, England (1994)

    Google Scholar 

  20. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems. Artificial Intelligence 81(1-2), 17–29 (1996)

    Article  MathSciNet  Google Scholar 

  21. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leandro Nunes de Castro Fernando José Von Zuben Helder Knidel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stibor, T. (2007). Phase Transition and the Computational Complexity of Generating r-Contiguous Detectors. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds) Artificial Immune Systems. ICARIS 2007. Lecture Notes in Computer Science, vol 4628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73922-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73922-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73921-0

  • Online ISBN: 978-3-540-73922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics