Abstract
Simulating spatial dynamics in physics by Cellular Automata (CA) requires very large computation power, and, hence, CA simulation algorithms are to be implemented on multiprocessors. The preconceived opinion, that no much effort is required to obtain highly efficient coarse grained parallel CA algorithm, is not always true. In fact, a great variety of CA modifications coming into practical use need appropriate, sometimes sophisticated, methods of CA algorithms parallel implementation. Proceeding from the above a general approach to CA parallelization, based on domain decomposition correctness conditions, is formulated. Starting from the correctness conditions particular parallelization methods are developed for the main classes of CA simulation models: synchronous CA with multi-cell updating rules, asynchronous probabilistic CA, and CA compositions. Examples and experimental results are given for each case.
Supported by 1)Presidium of Russian Academy of Sciences, Basic Research Program N 14.16 (2006), 2) Siberian Branch of Russian Academy of Sciences, Interdisciplinary Project 29 (2006).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Toffolli, T.: Cellular Automata as an Alternative to (rather than Approximation of) Differential Equations in Modeling Physics. Physica D 10, 117–127 (1984)
Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign, Ill., USA (2002)
Toffolli, T., Margolus, N.: Cellular Automata Machines. MIT Press, Cambridge (1987)
Rothman, B.H., Zaleski, S.: Lattice-Gas Cellular Automata. Cambridge Univ. Press, Complex Hydrodynamics. London (1997)
Latkin, E.I., Elokhin, V.I., Gorodetskii, V.V.: Spiral concentration waves in the Monte-Carlo model of CO oxidation over Pd(110) caused by synchronization via CO ads diffusion between separate parts of catalytic surface. Chemical Engineering Journal 91, 123–131 (2003)
Neizvestny, I.G., Shwartz, N.L., Yanovitskaya, Z.S., Zverev, A.V.: 3D-model of epitaxial growth on porous {111} and {100} Si surfaces. Computer Physics Communications 147, 272–275 (2002)
Sipper, M.: Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Springer, Heidelberg (1997)
Bandini, S., Erbacci, G., Mauri, G.: Implementing Cellular Automata Based Models on Parallel Architectures: The CAPP Project. In: Malyshkin, V. (ed.) Parallel Computing Technologies. LNCS, vol. 1662, pp. 167–179. Springer, Heidelberg (1999)
Carotenuto, L., Mele, F., Furnari, M.M., Napolitano, R.: Pecans: A parallel environment for cellular automata modeling. Complex Systems 10, 23–41 (1996)
Malinetski, G.G., Stepantsov, M.E.: Modeling Diuffusive Processes by Cellular Automata with Margolus Neighborhood. Zhurnal Vychislitelnoy Matematiki i Matematicheskoy Phiziki (in Russian) 36(6), 1017–1021 (1998)
Bandman, O.: Simulation Spatial Dynamics by Probabilistic Cellular Automata. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 10–19. Springer, Heidelberg (2002)
Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution Algorithm. In: Theory and Application, World Scientific, Singapore (1994)
Park, J.K., Steiglitz, K., Thurston, W.P.: Soliton-like behavior in automata. Physica D 19, 423–432 (1986)
Medvedev, Y.G.: Experimental study of Computational characteristic of parallel implementation of 3D cellular Automata model of viscous flow. In: Proceedings of Scientific Confernce Parallel Programming Technology, pp. 79–82. Moscow Univ. Press (2006)
Bandman, O.: Parallel Implementation of Asynchronous Cellular Automata Algorithm. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 41–47. Springer, Heidelberg (2006)
Nedea, S.V., Lukkien, J.J., Jansen, A.P.J., Hilbers, P.A.J.: Methods for parallel simulation of surface reaction. In: Werner, B. (ed.) 4th Int. Workshop on Parallel and Distributrd Scientific and Engineering Computing with Applications, pp. 7–16. IEEE Comp. Society, Nice, France (2003)
Chen, N., Glazier, J.A., Alber, M.S.A: A Parallel Implementation of the Cellular Potts Model for Simulation of Cell-Based Morphogenesis. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 58–67. Springer, Heidelberg (2006)
Bandman, O.: Composing Fine-graned Parallel Algorithms for Spatial Dynamics Simulation. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 99–113. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bandman, O. (2007). Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2007. Lecture Notes in Computer Science, vol 4671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73940-1_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-73940-1_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73939-5
Online ISBN: 978-3-540-73940-1
eBook Packages: Computer ScienceComputer Science (R0)